TMC5160 / TMC5160A DATASHEET

Universal high voltage controller/driver for two-phase bipolar stepper motor. StealthChop ${ }^{\text {M }}$ for quiet movement. External MOSFETs for up to 20A motor current per coil. With Step/Dir Interface and SPI.

Block Diagram

APPLICATION EXAMPLES: HIGH VOLTAGE - MULTIPURPOSE USE

The TMC5160 scores with complete motion controlling features, powerful external MOSFET driver stages, and high-quality current regulation. It offers a versatility that covers a wide spectrum of applications from battery powered, high efficiency systems up to embedded applications with 20A motor current per coil. The TMC5160 contains the complete intelligence which is required to drive a motor. Receiving target positions, the TMC5160 manages motor movement. Based on TRINAMICs unique features StallGuard2, CoolStep, DcStep, SpreadCycle, and StealthChop, it optimizes drive performance. It trades off velocity vs. motor torque, optimizes energy efficiency, smoothness of the drive, and noiselessness. The small form factor of the TMC5160 keeps costs down and allows for miniaturized layouts. Extensive support at the chip, board, and software levels enables rapid design cycles and fast time-to-market with competitive products. High energy efficiency and reliability deliver cost savings in related systems such as power supplies and cooling. For smaller designs, the compatible, integrated TMC5130 driver provides 1.4A of motor current.

Miniaturized Design for one Stepper Motor

Order Codes

Order code	PN	Description	Size [mm²]
TMC5160A-TA	$00-0179$	stepper controller/driver for external MOSFETs; TQFP48	7×7 (body)
TMC5160A-WA	$00-0192$	stepper controller/driver f. ext. MOSFETs; wett. QFN8x8	8×8
TMC5160A-xx-T	$\ldots-$ T	-T denotes tape on reel packing (xx= TA or WA)	
TMC5160-EVAL	$40-0138$	Evaluation board for TMC5160 (/A)	85×55
LANDUNGSBRÜCKE	$40-0167$	Baseboard for TMC5160-EVAL and further boards.	85×55
ESELSBRÜCKE	$40-0098$	Connector board fitting to Landungsbrücke	61×38

Hint: TMC5160 in this manual always refers to both, the TMC5160A and TMC5160, unless explicitly noted with "non-A-version" or "A-version". The A-version compatibly replaces the non- A-version.

published by wow ww.skYTECH.IR

Table of Contents

1 PRINCIPLES OF OPERATION 5
1.1 Key Concepts 6
1.2 CONTROL Interfaces7
1.3 Software 7
1.4 Moving and Controlling the Motor 8
1.5 Automatic Standstill Power Down. 8
1.6 STEALTHCHOP2 \& SPREADCYCLE DRIVER 8
1.7 StallGuardz - Mechanical Load Sensing.9
1.8 COOLSTEP - LOAD AdAPTIVE CURRENT 9
1.9 DcStep - Load Dependent Speed Control .10
1.10 ENCODER INTERFACE 10
2 PIN ASSIGNMENTS 11
2.1 Package Outline 11
2.2 SIGNAL DESCRIPTIONS 12
3 SAMPLE CIRCUITS 15
3.1 Standard Application Circuit 15
3.2 External Gate Voltage Regulator. 16
3.3 Choosing MOSFETS and Slope 17
3.4 Tuning the MOSFET Bridge 19
3.5 Higher Voltage Applications. 22
4 SPI INTERFACE 23
4.1 SPI Datagram Structure. 23
4.2 SPI Signals. 24
4.3 Timing 25
5 UART SINGLE WIRE INTERFACE 26
5.1 Datagram Structure. 26
5.2 CRC Calculation 28
5.3 UART Signals 28
5.4 Addressing Multiple Slaves. 29
6 REGISTER MAPPING 31
6.1 General Configuration Registers 32
6.2 Velocity Dependent Driver Feature Control Register Set 38
6.3 Ramp Generator Registers 40
6.4 EnCODER REGISTERS 45
6.5 Motor Driver Registers 47
7 STEALTHCHOPтм 57
7.1 Automatic Tuning 57
7.2 StealthChop Options 60
7.3 StealthChop Current Regulator. 60
7.4 Velocity Based Scaling 63
7.5 Combining StealthChop and SpreadCycle.64
7.6 Flags in StealthChop 66
7.7 Freewheeling and Passive Braking 66
8 SPREADCYCLE AND CLASSIC CHOPPER... 68
8.1 SPREADCYCLE CHOPPER 69
8.2 Classic Constant Off Time Chopper 72
9 SELECTING SENSE RESISTORS 74
10 VELOCITY BASED MODE CONTROL 76
11 DIAGNOSTICS AND PROTECTION 78
11.1 Temperature Sensors 78
11.2 Short Protection 78
11.3 Open Load Diagnostics 80
12 RAMP GENERATOR 81
12.1 Real World Unit Conversion 81
12.2 Motion Profiles. 82
12.3 Velocity Thresholds 84
12.4 ReFERENCE SWITCHES 85
13 87
13.1 Tuning StallGuardz Threshold SGT. 88
13.2 StallGuardz Update Rate and Filter. 90
13.3 Detecting a Motor Stall. 90
13.4 Homing with StallGuard 90
13.5 Limits of Stallguardz Operation. 90
14 COOLSTEP OPERATION 91
14.1 USER BENEFITS. 91
14.2 Setting up for CoolStep. 91
14.3 Tuning CoolStep. 93
15 STEPIDIR INTERFACE 94
15.1 TIMING. 94
15.2 Changing Resolution 95
15.3 MicroPlyer and Stand Still Detection. 96 96
16 DIAG OUTPUTS 97
16.1 STEPIDIR Mode 97
16.2 MOtion Controller Mode 97
17 DCSTEP 99
17.1 USER BENEFITS. 99
17.2 DESIGNING-IN DCSTEP 99
17.3 DCSTEP Integration with the Motion CONTROLLER. 100
17.4 Stall Detection in DcStep Mode 100
17.5 Measuring Actual Motor Velocity inDcStep Operation101
17.6 DCSTEP WITh STEP/DIR Interface. 102
18 SINE-WAVE LOOK-UP TABLE. 105
18.1 USER BENEFITS. 105
18.2 MICROSTEP TABLE 105
19 EMERGENCY STOP 106

published byw by wWW.SKYTECH.IR

20.1 ENCODER TIMING108
20.2 Setting the Encoder to Match Motor
Resolution 108
20.3 CLOSING THE LOOP 109
21 DC MOTOR OR SOLENOID 110
21.1 SOLENOID OPERATION 110
22 QUICK CONFIGURATION GUIDE 111
23 GETTING STARTED 116
23.1 InITIALIZATION EXAMPLES........................ 116
30.3 Package Codes
30.3 Package Codes 131 131
31 DESIGN PHILOSOPHY 132
24 STANDALONE OPERATION.................... 117 32 DISCLAIMER 132
119
EXTERNAL RESET
119
26 CLOCK OSCILLATOR AND INPUT 119
26.1 Using the Internal Clock. 119
26.2 Using an External Clock. 119
27 ABSOLUTE MAXIMUM RATINGS 120
36 REVISION HISTORY 134
120
28 ELECTRICAL CHARACTERISTICS
120
28.1 Operational Range
28.3 Thermal Characteristics 123
29 LAYOUT CONSIDERATIONS 125
29.1 Exposed Die Pad 125
29.2 Wiring GND 125
29.3 Wiring Bridge Supply. 125
29.4 SUPPLY FILTERING 125
29.5 LAYOUT EXAMPLE 126
30 PACKAGE MECHANICAL DATA. 128
30.1 Dimensional Drawings TQFP48-EP 128
30.2 Dimensional Drawings QFN-WA 130
33 ESD SENSITIVE DEVICE 132
34 DESIGNED FOR SUSTAINABILITY. 132
35 TABLE OF FIGURES 133
37 REFERENCES 134
121
28.2 DC and Timing Characteristics

1 Principles of Operation

The TMC5160 motion controller and driver chip is an intelligent power component interfacing between CPU and a high power stepper motor. All stepper motor logic is completely within the TMC5160. No software is required to control the motor - just provide target positions. The TMC5160 offers a number of unique enhancements which are enabled by the system-on-chip integration of driver and controller. The SixPoint ramp generator of the TMC5160 uses StealthChop, DcStep, CoolStep, and StallGuard2 automatically to optimize every motor movement. The TMC5160 ideally extends the TMC2100, TMC2130 and TMC5130 family to higher voltages and higher motor currents.

The TMC5160 offers three basic modes of operation:

MODE 1: Full Featured Motion Controller \& Driver

All stepper motor logic is completely within the TMC5160. No software is required to control the motor - just provide target positions. Enable this mode by tying low pin SD_MODE.

MODE 2: Step \& Direction Driver

An external high-performance S-ramp motion controller like the TMC4361 or a central CPU generates step \& direction signals synchronized to other components like additional motors within the system. The TMC5160 takes care of intelligent current and mode control and delivers feedback on the state of the motor. The MicroPlyer automatically smoothens motion. Tie SD_MODE high.

MODE 3: Simple Step \& Direction Driver

The TMC5160 positions the motor based on step \& direction signals. The MicroPlyer automatically smoothens motion. No CPU interaction is required; configuration is done by hardware pins. Basic standby current control can be done by the TMC5160. Optional feedback signals allow error detection and synchronization. Enable this mode by tying pin SPI_MODE low and SD_MODE high.

Figure 1.1 TMC5160 basic application block diagram (motion controller)

Figure 1.2 TMC5160 STEP/DIR application diagram

Figure 1.3 TMC5160 standalone driver application diagram

1.1 Key Concepts

The TMC5160 implements advanced features which are exclusive to TRINAMIC products. These features contribute toward greater precision, greater energy efficiency, higher reliability, smoother motion, and cooler operation in many stepper motor applications.

StealthChop2TM No-noise, high-precision chopper algorithm for inaudible motion and inaudible standstill of the motor. Allows faster motor acceleration and deceleration than StealthChop ${ }^{\text {TM }}$ and extends StealthChop to low stand still motor currents.
SpreadCycle ${ }^{\text {TM }}$ High-precision chopper algorithm for highly dynamic motion and absolutely clean current wave. Low noise, low resonance and low vibration chopper.
DcStep ${ }^{\text {TM }} \quad$ Load dependent speed control. The motor moves as fast as possible and never loses a step.
StallGuard2 ${ }^{\mathrm{TM}}$ Sensorless stall detection and mechanical load measurement.
CoolStep ${ }^{\text {TM }} \quad$ Load-adaptive current control reducing energy consumption by as much as 75%.
MicroPlyer ${ }^{\text {TM }} \quad$ Microstep interpolator for obtaining full 256 microstep smoothness with lower resolution step inputs starting from fullstep
In addition to these performance enhancements, TRINAMIC motor drivers offer safeguards to detect and protect against shorted outputs, output open-circuit, overtemperature, and undervoltage conditions for enhancing safety and recovery from equipment malfunctions.

1.2 Control Interfaces

The TMC5160 supports both, an SPI interface and a UART based single wire interface with CRC checking. Additionally, a standalone mode is provided for pure STEP/DIR operation without use of the serial interface. Selection of the actual interface is done via the configuration pins SPI_MODE and SD_MODE, which can be hardwired to GND or VCC_IO depending on the desired interface.

1.2.1 SPI Interface

The SPI interface is a bit-serial interface synchronous to a bus clock. For every bit sent from the bus master to the bus slave another bit is sent simultaneously from the slave to the master. Communication between an SPI master and the TMC5160 slave always consists of sending one 40-bit command word and receiving one 40 -bit status word.

The SPI command rate typically is a few commands per complete motor motion.

1.2.2 UART Interface

The single wire interface allows differential operation similar to RS485 (using SWP and SWN) or single wire interfacing (leaving open SWN). It can be driven by any standard UART. No baud rate configuration is required.

1.3 Software

From a software point of view the TMC5160 is a peripheral with a number of control and status registers. Most of them can either be written only or read only. Some of the registers allow both read and write access. In case read-modify-write access is desired for a write only register, a shadow register can be realized in master software.

1.4 Moving and Controlling the Motor

1.4.1 Integrated Motion Controller

The integrated 32 bit motion controller automatically drives the motor to target positions, or accelerates to target velocities. All motion parameters can be changed on the fly. The motion controller recalculates immediately. A minimum set of configuration data consists of acceleration and deceleration values and the maximum motion velocity. A start and stop velocity is supported as well as a second acceleration and deceleration setting. The integrated motion controller supports immediate reaction to mechanical reference switches and to the sensorless stall detection StallGuard2.

Benefits are:

- Flexible ramp programming
- Efficient use of motor torque for acceleration and deceleration allows higher machine throughput
- Immediate reaction to stop and stall conditions

1.4.2 STEPIDIR Interface

The motor can optionally be controlled by a step and direction input. In this case, the motion controller remains unused. Active edges on the STEP input can be rising edges or both rising and falling edges as controlled by another mode bit (dedge). Using both edges cuts the toggle rate of the STEP signal in half, which is useful for communication over slow interfaces such as optically isolated interfaces. On each active edge, the state sampled from the DIR input determines whether to step forward or back. Each step can be a fullstep or a microstep, in which there are 2, 4, 8, 16, 32, 64, 128, or 256 microsteps per fullstep. A step impulse with a low state on DIR increases the microstep counter and a high decreases the counter by an amount controlled by the microstep resolution. An internal table translates the counter value into the sine and cosine values which control the motor current for microstepping.

1.5 Automatic Standstill Power Down

An automatic current reduction drastically reduces application power dissipation and cooling requirements. Modify stand still current, delay time and decay via register settings. Automatic freewheeling and passive motor braking are provided as an option for stand still. Passive braking reduces motor standstill power consumption to zero, while still providing effective dampening and braking! An option for faster detection of standstill is provided for both, ramp generator and STEPIDIR operation.

Figure 1.4 Automatic Motor Current Power Down

1.6 StealthChop2 \& SpreadCycle Driver

StealthChop is a voltage chopper based principle. It especially guarantees that the motor is absolutely quiet in standstill and in slow motion, except for noise generated by ball bearings. Unlike other voltage mode choppers, StealthChop2 does not require any configuration. It automatically learns the best settings during the first motion after power up and further optimizes the settings in subsequent motions. An initial homing sequence is sufficient for learning. Optionally, initial learning parameters
can be pre-configured via the interface. StealthChop2 allows high motor dynamics, by reacting at once to a change of motor velocity.
For highest dynamic applications, SpreadCycle is an option to StealthChop2. It can be enabled via input pin (standalone mode) or via SPI or UART interface. StealthChop2 and SpreadCycle may even be used in a combined configuration for the best of both worlds: StealthChop2 for no-noise stand still, silent and smooth performance, SpreadCycle at higher velocity for high dynamics and highest peak velocity at low vibration.
SpreadCycle is an advanced cycle-by-cycle chopper mode. It offers smooth operation and good resonance dampening over a wide range of speed and load. The SpreadCycle chopper scheme automatically integrates and tunes fast decay cycles to guarantee smooth zero crossing performance.

Benefits of using StealthChop2:

- Significantly improved microstepping with low cost motors
- Motor runs smooth and quiet
- Absolutely no standby noise
- Reduced mechanical resonance yields improved torque

1.7 StallGuard2 - Mechanical Load Sensing

StallGuard2 provides an accurate measurement of the load on the motor. It can be used for stall detection as well as other uses at loads below those which stall the motor, such as CoolStep loadadaptive current reduction. This gives more information on the drive allowing functions like sensorless homing and diagnostics of the drive mechanics.

1.8 CoolStep - Load Adaptive Current Control

CoolStep drives the motor at the optimum current. It uses the StallGuard2 load measurement information to adjust the motor current to the minimum amount required in the actual load situation. This saves energy and keeps the components cool.

Benefits are:

- Energy efficiency
- Motor generates less heat
- Less or no cooling
- Use of smaller motor
power consumption decreased up to 75%
improved mechanical precision
improved reliability
less torque reserve required \rightarrow cheaper motor does the job

Figure 1.5 shows the efficiency gain of a 42 mm stepper motor when using CoolStep compared to standard operation with 50% of torque reserve. CoolStep is enabled above 60RPM in the example.

Figure 1.5 Energy efficiency with CoolStep (example)

1.9 DcStep - Load Dependent Speed Control

DcStep allows the motor to run near its load limit and at its velocity limit without losing a step. If the mechanical load on the motor increases to the stalling load, the motor automatically decreases velocity so that it can still drive the load. With this feature, the motor will never stall. In addition to the increased torque at a lower velocity, dynamic inertia will allow the motor to overcome mechanical overloads by decelerating. DcStep directly integrates with the ramp generator, so that the target position will be reached, even if the motor velocity needs to be decreased due to increased mechanical load. A dynamic range of up to factor 10 or more can be covered by DcStep without any step loss. By optimizing the motion velocity in high load situations, this feature further enhances overall system efficiency.

Benefits are:

- Motor does not loose steps in overload conditions
- Application works as fast as possible
- Highest possible acceleration automatically
- Highest energy efficiency at speed limit
- Highest possible motor torque using fullstep drive
- Cheaper motor does the job

1.10 Encoder Interface

The TMC5160 provides an encoder interface for external incremental encoders. The encoder provides automatic checking for step loss and can be used for homing of the motion controller (alternatively to reference switches). A programmable prescaler allows the adaptation of the encoder resolution to the motor resolution. A 32 bit encoder counter is provided.

2 Pin Assignments

2.1 Package Outline

Figure 2.1 TMC5160-TA package and pinning TQFP-EP 48 ($7 \times 7 \mathrm{~mm}^{2}$ body, $9 \times 9 \mathrm{~mm}^{2}$ with leads)

Figure 2.2 TMC5160-WA package and pinning QFN-WA (8x8mm²)

2.2 Signal Descriptions

Pin	TQFP	QFN	Type	Function
HB1	1	2		High side gate driver output.
CB1	2	3		Bootstrap capacitor positive connection.
12VOUT	3	4		Output of internal 11.5 V gate voltage regulator and supply pin of low side gate drivers. Attach $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ ceramic capacitor to GND plane near to pin for best performance. Use at least 10 times more capacity than for bootstrap capacitors. In case an external gate voltage supply is available, tie VSA and 12VOUT to the external supply.
VSA	4	5		Analog supply voltage for 11.5 V and 5 V regulator. Normally tied to VS. Provide a 100 nF filtering capacitor.
5VOUT	5	6		Output of internal 5 V regulator. Attach $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ ceramic capacitor to GNDA near to pin for best performance. Output for VCC supply of the chip.
GNDA	6	7		Analog GND. Connect to GND plane near pin.
SRAL	7	8	AI	Sense resistor GND connection for phase A. Connect to the GND side of the sense resistor in order to compensate for voltage drop on the GND interconnection.
SRAH	8	9		Sense resistor for phase A. Connect to the upper side of the sense resistor. A Kelvin connection is preferred with high motor currents. Symmetrical RC-Filtering may be added for SRAL and SRAH to eliminate high frequency switching spikes from other drives or switching of coil B.
SRBH	9	10	AI	Sense resistor for phase B. Connect to the upper side of the sense resistor. A Kelvin connection is preferred with high motor currents. Symmetrical RC-Filtering may be added for SRBL and SRBH to eliminate high frequency switching spikes from other drives or switching of coil A.
SRBL	10	11	AI	Sense resistor GND connection for phase B. Connect to the GND side of the sense resistor in order to compensate for voltage drop on the GND interconnection.
TST_MODE	11	12	DI	Test mode input. Tie to GND using short wire.
CLK	12	13	DI	CLK input. Tie to GND using short wire for internal clock or supply external clock. Internal clock-fail over circuit protects against loss of external clock signal.
CSN_CFG3	13	14	DI	SPI chip select input (negative active) (SPI_MODE=1) or Configuration input (SPI_MODE=0)
SCK_CFG2	14	15	DI	SPI serial clock input (SPI_MODE=1) or Configuration input (SPI_MODE=0)
SDI_CFG1	15	16	DI	SPI data input (SPI_MODE=1) or Configuration input (SPI_MODE=0) or Next address input (NAI) for single wire interface.
SDO_CFGO	16	17	DIO	SPI data output (tristate) (SPI_MODE=1) or Configuration input (SPI_MODE=0) or Next address output (NAO) for single wire interface.
REFL_STEP	17	18	DI	Left reference input (for internal ramp generator) or STEP input when (SD_MODE=1).
REFR_DIR	18	19	DI	Right reference input (for internal ramp generator) or DIR input (SD_MODE=1).
GNDD	$\begin{aligned} & \hline 19 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline 25, \\ & \mathrm{Pad} \\ & \hline \end{aligned}$		Digital GND. Connect to GND plane near pin.
VCC_IO	20	20		3.3 V to 5V IO supply voltage for all digital pins.

www.trinamic.com

Pin	TQFP	QFN	Type	Function
SD_MODE	21	21	DI	Mode selection input. When tied low, the internal ramp generator generates step pulses. When tied high, the STEPIDIR inputs control the driver. SD_MODE=0 and SPI_MODE=0 enable UART operation.
SPI_MODE	22	22	DI (pd)	Mode selection input. When tied low with SD_MODE=1, the chip is in standalone mode and pins have their CFG functions. When tied high, the SPI interface is enabled. Integrated pull down resistor.
$\begin{aligned} & \text { ENCB_DCEN_ } \\ & \text { CFG4 } \end{aligned}$	23	23	DI (pd)	Encoder B-channel input (when using internal ramp generator) or DcStep enable input (SD_MODE=1, SPI_MODE=1) - leave open or tie to GND for normal operation in this mode (no DcStep). Configuration input (SPI_MODE=0)
$\begin{aligned} & \text { ENCA_DCIN_ } \\ & \text { CFG5 } \end{aligned}$	24	24	DI (pd)	Encoder A-channel input (when using internal/ramp generator) or DcStep gating input for axis synchronization (SD_MODE=1, SPI_MODE=1) or Configuration input (SPI_MODE=0)
$\begin{aligned} & \text { ENCN_DCO_ } \\ & \text { CFG6 } \end{aligned}$	25	26	DIO	Encoder N -channel input (SD_MODE=0) or DcStep ready output (SD_MODE=1). With SD_MODE=0, pull to GND or VCC_IO, if the pin is not used for an encoder.
DIAGO_SWN	26	27	DIO (pu+ pd)	Diagnostics output DIAGO. Interrupt or STEP output for motion controller (SD_MODE=0, SPI_MODE=1). Use external pullup resistor with 47 k or less in open drain mode. Single wire I/O (negative) (only with SD_MODE=0 and SPI_MODE=0)
DIAG1_SWP		28	$\begin{aligned} & \text { DIO } \\ & \text { (pd) } \end{aligned}$	Diagnostics output DIAG1. Position compare or DIR output for motion controller (SD_MODE=0, SPI_MODE=1). Use external pullup resistor with 47 k or less in open drain mode. Single wire I/O (positive) (only with SD_MODE=0 and SPI_MODE=0)
DRV_ENN	28	29	DI	Enable input. The power stage becomes switched off (all motor outputs floating) when this pin becomes driven to a high level.
VCC	29	30		5 V supply input for digital circuitry within chip. Provide 100nF or bigger capacitor to GND (GND plane) near pin. Shall be supplied by 5VOUT. A 2.2 or 3.3 Ohm resistor is recommended for decoupling noise from 5VOUT. When using an external supply, make sure, that VCC comes up before or in parallel to 5VOUT or VCC_IO, whichever comes up later!
CPO	31	31		Charge pump capacitor output.
CPI	32	32		Charge pump capacitor input. Tie to CPO using $22 n F 100 \mathrm{~V}$ capacitor.
VS	33	33		Motor supply voltage. Provide filtering capacity near pin with short loop to GND plane. Must be tied to the positive bridge supply voltage.
VCP	34	34		Charge pump voltage. Tie to VS using 100nF capacitor.
CA2	35	35		Bootstrap capacitor positive connection.
HA2	36	36		High side gate driver output.

www.trinamic.com

Pin	TQFP	QFN	Type	Function
BMA2	37	37		Bridge Center and bootstrap capacitor negative connection.
LA2	38	38		Low side gate driver output.
LA1	39	39		Low side gate driver output.
BMA1	40	40		Bridge Center and bootstrap capacitor negative connection.
HA1	41	41		High side gate driver output.
CA1	42	42		Bootstrap capacitor positive connection.
CB2	43	43		Bootstrap capacitor positive connection.
HB2	44	44		High side gate driver output.
BMB2	45	45		Bridge Center and bootstrap capacitor negative connection.
LB2	46	46		Low side gate driver output.
LB1	47	47		Low side gate driver output.
BMB1	48	1		Bridge Center and bootstrap capacitor negative connection. Exposed die pad

*(pd) denominates a pin with pulldown resistor

* All digital pins DI, DIO and DO use VCC_IO level and contain protection diodes to GND and VCC_IO
* All digital inputs DI and DIO have internal Schmitt-Triggers

3 Sample Circuits

The following sample circuits show the required external components in different operation and supply modes. The connection of the bus interface and further digital signals are left out for clarity.

3.1 Standard Application Circuit

The standard application circuit uses a minimum set of additional components. Eight MOSFETs are selected for the desired current, voltage and package type. Two sense resistors set the motor coil current. See chapter 9 to choose the right value for sense resistors. Use low ESR capacitors for filtering the power supply. A minimum capacity of $100 \mu \mathrm{~F}$ per ampere of coil current near to the power bridge is recommended for best performance. The capacitors need to cope with the current ripple caused by chopper operation. Current ripple in the supply capacitors also depends on the power supply internal resistance and cable length. VCC_IO can be supplied from 5VOUT, or from an external source, e.g. a 3.3 V regulator. In order to minimize linear voltage regulator power dissipation of the internal 5 V and 11.5 V voltage regulators in applications where VM is high, a different (lower) supply voltage should be used for VSA (see chapter 3.2).

Basic layout hints

Place sense resistors and all filter capacitors as close as possible to the power MOSFETs. Place the TMC5160 near to the MOSFETs and use short interconnection lines in order to minimize parasitic trace inductance. Use a solid common GND for all GND, GNDA and GNDD connections, also for sense resistor GND. Connect 5VOUT filtering capacitor directly to 5VOUT and GNDA pin. See layout hints for more details. Low ESR electrolytic capacitors are recommended for VS filtering.

Hint

In safety critical applications, VS and the bridge may be supplied by a separate, switched supply in order to realize safe torque off. Make sure that the slope at VS does not exceed $1 \mathrm{~V} / \mu \mathrm{s}$.

Attention

In case VSA is supplied by a different voltage source, make sure that VSA does not drop out during motor operation. The motor driver should be disabled in case VSA becomes switched off before VS. Hard switching edges on VSA might result in bridge cross-conduction otherwise. It is safest to derive VSA voltage from VS supply.

3.2 External Gate Voltage Regulator

At high supply voltages like 48 V , the internal gate voltage regulator and the internal 5 V regulator have considerable power dissipation, especially with high MOSFET gate charges, high chopper frequency or high system clock frequency $>12 \mathrm{MHz}$. A good thermal coupling of the heat slug to the system PCB GND plane is required to dissipate heat. Still, the thermal thresholds will be lowered significantly by self-heating. To reduce power dissipation, supply an external gate driver voltage to the TMC5160. Figure 3.2 shows the required connection. The internal gate voltage regulator becomes disabled in this constellation. $12 \mathrm{~V}+\mathrm{l}-1 \mathrm{~V}$ are recommended for best results.

Figure 3.2 External gate voltage supply

Hint
With MOSFETs above 50 nC of total gate charge, chopper frequency $>40 \mathrm{kHz}$, or at clock frequency $>12 \mathrm{MHz}$, it is recommended to use a VSA supply not higher than 40 V .

3.3 Choosing MOSFETs and Slope

The selection of power MOSFETs depends on a number of factors, like package size, on-resistance, voltage rating and supplier. It is not true, that larger, lower RDSon MOSFETs will always be better, as a larger device also has higher capacitances and may add more ringing in trace inductance and power dissipation in the gate drive circuitry. Adapt the MOSFETs to the required motor voltage (adding 5-10V of reserve to the peak supply voltage) and to the desired maximum current, in a way that resistive power dissipation still is low for the thermal capabilities of the chosen MOSFET package. The TMC5160 drives the MOSFET gates with roughly 10 V , so normal, 10 V specified types are sufficient. Logic level FETs (4.5V specified RDSon) will also work, but may be more critical with regard to bridge crossconduction due to lower $\mathrm{V}_{G S(t h)}$.

The gate drive current and MOSFET gate resistors R_{G} (optional) determine switching behavior and should basically be adapted to the MOSFET gate-drain charge (Miller charge). Figure 3.3 shows the influence of the Miller charge on the switching event. Figure 3.4 additionally shows the switching events in different load situations (load pulling the output up or down), and the required bridge brake-before-make time.
The following table shall serve as a thumb rule for programming the MOSFET driver current (DRVSTRENGTH setting) and the selection of gate resistors:

The TMC5160 provides increased gate-off drive current to avoid bridge cross-conduction induced by high dV/dt. This protection will be less efficient with gate resistors exceeding the values given in the table. Therefore, for larger values of R_{G} a parallel diode may be required to ensure keeping the MOSFET safely off during switching events.

Figure 3.3 Miller charge determines switching slope

Hints

Choose modern MOSFETs with fast and soft recovery bulk diode and low reverse recovery charge. A small, SMD MOSFET package allows compacter routing and reduces parasitic inductance effects.

Figure 3.4 Slopes, Miller plateau and blank time

The following $D R V$ _CONF parameters allow adapting the driver to the MOSFET bridge:

Parameter	Description	Setting	Comment
BBMTIME	Break-before-make time setting to ensure non- overlapping switching of high-side and low-side MOSFETs. BBMTIME allows fine tuning of times in increments shorter than a clock period. For higher times, use BBMCLKS.	time[ns] $100 \mathrm{ns*32/(32-BBMTIME)}$	
BBMCLKS	Like BBMTIME, but in multiple of a clock cycle. The longer setting rules (BBMTIME vs. BBMCLKS).	$0 \ldots 15$	Ensure -30\% headroom Reset Default: 0
0: off			
Reset Default: OTP 4 or 2			
DRV_	Selection of gate driver current. Adapts the gate STRENGTH driver current to the gate charge of the external MOSFETs.	$0 . .3$	Reset Default = 2

DRV_CONF Parameters

Use the lowest gate driver strength setting DRVSTRENGTH giving favorable switching slopes, before increasing the value of the gate series resistors. A slope time of nominal 40 ns to 80 ns is absolutely sufficient and will normally be covered by the shortest possible Break-Before-Make time setting (BBMTIME $=0$, BBMCLKS $=0$).
In case slower slopes have to be used, e.g. with large MOSFETs, ensure that the break-before-make time (BBMTIME, optionally use BBMCLKS for times $>200 \mathrm{~ns}$) sufficiently covers the switching event, in order to avoid bridge cross conduction. The shortest break-before-make time, safely covering the switching event, gives best results. Add roughly 30% of reserve, to cover production stray of MOSFETs and driver.

3.4 Tuning the MOSFET Bridge

A clean switching event is favorable to ensure low power dissipation and good EMC behavior. Unsuitable layout or components endanger stable operation of the circuit. Therefore, it is important to understand the effect of parasitic trace inductivity and MOSFET reverse recovery.

Stray inductance in power routing will cause ringing whenever the opposite MOSFET is in diode conduction prior to switching on a low-side or high-side MOSFET. Diode conduction occurs during break-before make time whenever the load current is inverse to the following bridge polarity. The MOSFET bulk diode has a certain, type specific reverse recovery time and charge. This time typically is in the range of a few 10 ns. During reverse recovery time, the bulk diode will cause high current flow across the bridge. This current is taken from the power supply filter capacitors (see thick lines Figure 3.5). Once the diode opens parasitic inductance tries to keep the current flowing. A high, fast slope results and leads to ringing in all parasitic inductivities (see Figure 3.6). This may lead to bridge voltage undershooting the GND level as well as fast pulses on VS and all MOSFET connections. It must be ensured, that the driver IC does not see spikes on its BM pins to GND going below -5V. Severe VS ripple might overload the charge-pump circuitry. Measure the voltage directly at the driver pins to driver GND. The amount of undershooting depends on energy stored in parasitic inductivities from low side drain to low side source and via the sense resistor RS to GND.

When using relatively small MOSFETs, a soft slope control requires a high gate series resistance. This endangers safe MOSFET switch off. Add additional diodes to ensure safe MOSFET off conditions with slow switch-on slopes (shown for right MOSFET pair in Figure 3.5).

Figure 3.7 shows performance of the basic circuit after adapting switching slope and adding 1 nF bridge output capacitors.
 undershooting of BM in case of high parasitic layout inductivity, e.g. with long interconnections to MOSFETs.

Figure 3.5 Bridge protection options for power routing inductivity

Ensure Reliable Operation

Use SMD MOSFETs and short interconnections
Provide sufficient power filtering capacity close to the bridge and close to VS pin

- Tune MOSFET switching slopes (measure switch-on event at MOSFET gate) to be slower than the MOSFET bulk diode reverse recovery time. This will reduce cross conduction.
Add optional gate resistors close to MOSFET gate and output capacitors to ensure clean switching and reliable operation by minimizing ringing. Figure 3.5 shows the options plus some variations.
Some MOSFETs eliminate reverse recovery charge by integrating a fast diode from source to drain.

Figure 3.6 Ringing of output (blue) and Gate voltages (Yellow, Cyan) with untuned brige

Figure 3.7 Switching event with optimized components (without I after bulk diode conduction)

BRIDGE Optimization Example

A stepper driver for 6A of motor current has been designed using the MOSFET AOD4126 in the standard schematic.
The MOSFETs have a low gate capacitance and offer roughly 50 ns slope time at the lowest driver strength setting. At lowest driver strength setting, switching quality is best (Figure 3.6), but still shows a lot of ringing. Low side gate resistors have been added to slightly increase switching slope time following high-side bulk diode conduction by increasing the effect of Gate-Drain (Miller) charge. High side gate resistors have been added for symmetry. Tests showed, that 1 nF output capacitors dramatically reduce ringing of the power bridge following bulk diode conduction (Figure 3.7). Figure 3.8 shows the actual components and values after optimization.

Figure 3.8 Example for bridge with tuned components (see scope shots)

Bridge layout Considerations

Tune the bridge layout for minimum loop inductivity. A compact layout is best.
Keep MOSFET gate connections short and straight and avoid loop inductivity between BM and corresponding HS driver pin. Loop inductance is minimized with parallel traces, or adjacent traces on adjacent layers. A wider trace reduces inductivity (don't use minimum trace width).
Minimize the length of the sense resistor connection to low-side MOSFET source, and place the TMC5160 near the sense resistor's GND connection, with its GND connections directly connected to the same GND plane.
Optimize switching behavior by tuning gate current setting and gate resistors. Add MOSFET bridge output capacitors (470 pF to a few nF) to reduce ringing.
Measure the performance of the bridge by probing BM pins directly at the bridge or at the TMC5160 using a short GND tip on the scope probe rather than a GND cable, if available.

3.5 Higher Voltage Applications

Some applications require higher voltage tolerance, than the TMC5160 can directly support. For peak voltages above 60V, use an external gate driver IC boosting the TMC5160 gate driver outputs. Figure 3.9 shows a sample circuit. It uses one external gate-driver IC for each half-bridge, to boost the TMC5160 outputs. BBM control still is done by TMC5160. These ICs are 12V tolerant, so the TMC5160 output signals can be directly used for driving their control inputs. The BM pins however need to be kept near GND, in order to yield a GND-related high side control signal. By attaching BM to the respective sense resistor, the short to VS protection still can react to overcurrent conditions. Limit short detection voltage drop to $0.5 \mathrm{~V} . . .0 .8 \mathrm{~V}$ to avoid high side outputs to reach a too high level. Highside short protection has to be disabled using CHOPCONF.diss2g, as it cannot work in this circuit configuration.
Keep layout and all interconnections compact, in order to avoid disturbance by parasitic effects. Also consult application notes for the selected gate driver ICs.

4 SPI Interface

4.1 SPI Datagram Structure

The TMC5160 uses 40 bit SPI ${ }^{\text {TM }}$ (Serial Peripheral Interface, SPI is Trademark of Motorola) datagrams for communication with a microcontroller. Microcontrollers which are equipped with hardware SPI are typically able to communicate using integer multiples of 8 bit. The NCS line of the device must be handled in a way, that it stays active (low) for the complete duration of the datagram transmission.

Each datagram sent to the device is composed of an address byte followed by four data bytes. This allows direct 32 bit data word communication with the register set. Each register is accessed via 32 data bits even if it uses less than 32 data bits.

For simplification, each register is specified by a one-byte address:

- For a read access the most significant bit of the address byte is 0 . For a write access the most significant bit of the address byte is 1 .

Most registers are write-only registers, some can be read additionally, and there are also some read only registers.

4.1.1 Selection of Write / Read (WRITE_notREAD)

The read and write selection is controlled by the MSB of the address byte (bit 39 of the SPI datagram). This bit is 0 for read access and 1 for write access. So, the bit named W is a WRITE_notREAD control bit. The active high write bit is the MSB of the address byte. So, 0×80 has to be added to the address for a write access. The SPI interface always delivers data back to the master, independent of the W bit. The data transferred back is the data read from the address which was transmitted with the previous datagram, if the previous access was a read access. If the previous access was a write access, then the data read back mirrors the previously received write data. So, the difference between a read and a write access is that the read access does not transfer data to the addressed register but it transfers the address only and its 32 data bits are dummies, and, further the following read or write access delivers back the data read from the address transmitted in the preceding read cycle.

A read access request datagram uses dummy write data. Read data is transferred back to the master with the subsequent read or write access. Hence, reading multiple registers can be done in a pipelined fashion.

Whenever data is read from or written to the TMC5160, the MSBs delivered back contain the SPI status, SPI_STATUS, a number of eight selected status bits.

Example:

For a read access to the register (XACTUAL) with the address 0×21, the address byte has to be set to 0×21 in the access preceding the read access. For a write access to the register (VACTUAL), the address byte has to be set to $0 \times 80+0 \times 22=0 \times A 2$. For read access, the data bit might have any value (-). So, one can set them to 0 .

action	data sent to TMC5160	data received from TMC5160
read $X A C T U A L$	$\rightarrow 0 \times 2100000000$	$\leftarrow 0 \times S S$ \& unused data
read $X A C T U A L$	$\rightarrow 0 \times 2100000000$	$\leftarrow 0 \times S S$ \& XACTUAL
write $V M A X:=0 \times 00 A B C D E F$	$\rightarrow 0 \times A 700$ ABCDEF	$\leftarrow 0 \times S S$ \& XACTUAL
write $V M A X:=0 \times 00123456$	\rightarrow 0xA700123456	$\leftarrow 0 \times S S 00$ ABCDEF

*) S : is a placeholder for the status bits SPI_STATUS

4.1.2 SPI Status Bits Transferred with Each Datagram Read Back

New status information becomes latched at the end of each access and is available with the next SPI transfer.

SPI_STATUS - status flags transmitted with each SPI access in bits 39 to 32		
Bit	Name	Comment
7	status_stop_r	RAMP_STAT[1] - 1: Signals stop right switch status (motion controller only)
6	status_stop_l	RAMP_STAT[0] - 1: Signals stop left switch status (motion controller only)
5	position_reached	RAMP_STAT[9] - 1: Signals target position reached (motion controller only)
4	velocity_reached	RAMP_STAT[8] - 1: Signals target velocity reached (motion controller only)
3	standstill	DRV_STATUS[31] - 1: Signals motor stand still
2	sg2	DRV_STATUS[24]-1: Signals StallGuard flag active
1	driver_error	GSTAT[1]-1: Signals driver 1 driver error (clear by reading GSTAT)
0	reset_flag	GSTAT[0] - 1: Signals, that a reset has occurred (clear by reading GSTAT)

4.1.3 Data Alignment

All data are right aligned. Some registers represent unsigned (positive) values, some represent integer values (signed) as two's complement numbers, single bits or groups of bits are represented as single bits respectively as integer groups.

4.2 SPI Signals

The SPI bus on the TMC5160 has four signals:

- SCK - bus clock input
- SDI - serial data input
- SDO - serial data output
- CSN - chip select input (active low)

The slave is enabled for an SPI transaction by a low on the chip select input CSN. Bit transfer is synchronous to the bus clock SCK, with the slave latching the data from SDI on the rising edge of SCK and driving data to SDO following the falling edge. The most significant bit is sent first. A minimum of 40 SCK clock cycles is required for a bus transaction with the TMC5160.
If more than 40 clocks are driven, the additional bits shifted into SDI are shifted out on SDO after a 40-clock delay through an internal shift register. This can be used for daisy chaining multiple chips.
CSN must be low during the whole bus transaction. When CSN goes high, the contents of the internal shift register are latched into the internal control register and recognized as a command from the master to the slave. If more than 40 bits are sent, only the last 40 bits received before the rising edge of CSN are recognized as the command.

4.3 Timing

The SPI interface is synchronized to the internal system clock, which limits the SPI bus clock SCK to half of the system clock frequency. If the system clock is based on the on-chip oscillator, an additional 10% safety margin must be used to ensure reliable data transmission. All SPI inputs as well as the ENN input are internally filtered to avoid triggering on pulses shorter than 20ns. Figure 4.1 shows the timing parameters of an SPI bus transaction, and the table below specifies their values.

Figure 4.1 SPI timing

Hint Usually this SPI timing is referred to as SPI MODE 3						
SPI interface timing	AC-Characteristics clock period: $\mathrm{t}_{\text {clk }}$			Typ		Unit
Parameter	Symbol	Conditions	Min		Max	
SCK valid before or after change of CSN	tcc		10			ns
CSN high time	$\mathrm{t}_{\text {CSH }}$	*) Min time is for synchronous CLK with SCK high one t_{CH} before CSN high only	$\left.\mathrm{t}_{\mathrm{cı}}{ }^{*}\right)^{\prime}$	$>2 t_{\text {cık }}+10$		ns
SCK low time	t_{CL}	*) Min time is for synchronous CLK only	$\mathrm{tcık}^{*}{ }^{\text {a }}$	>tcık +10		ns
SCK high time	t_{CH}	*) Min time is for synchronous CLK only	$\mathrm{t}_{\text {cık }}{ }^{*}$	>t $\mathrm{c}_{\text {CLK }}+10$		ns
SCK frequency using internal clock	$\mathrm{f}_{\mathrm{sck}}$	assumes minimum OSC frequency			4	MHz
SCK frequency using external 16 MHz clock	$\mathrm{f}_{\text {ck }}$	assumes synchronous CLK		-	8	MHz
SDI setup time before rising edge of SCK	$t_{\text {D }}$		10			ns
SDI hold time after rising edge of SCK	$t_{\text {DH }}$		10			ns
Data out valid time after falling SCK clock edge	t_{D}	no capacitive load on SDO			$\mathrm{t}_{\text {FILT }}+5$	ns
SDI, SCK and CSN filter delay time	$\mathrm{t}_{\text {filt }}$	rising and falling edge	12	20	30	ns

5 UART Single Wire Interface

The UART single wire interface allows the control of the TMC5160 with any microcontroller UART. It shares transmit and receive line like an RS485 based interface. Data transmission is secured using a cyclic redundancy check, so that increased interface distances (e.g. over cables between two PCBs) can be bridged without the danger of wrong or missed commands even in the event of electro-magnetic disturbance. The automatic baud rate detection and an advanced addressing scheme make this interface easy and flexible to use.

5.1 Datagram Structure

5.1.1 Write Access

A sync nibble precedes each transmission to and from the TMC5160 and is embedded into the first transmitted byte, followed by an addressing byte. Each transmission allows a synchronization of the internal baud rate divider to the master clock. The actual baud rate is adapted and variations of the internal clock frequency are compensated. Thus, the baud rate can be freely chosen within the valid range. Each transmitted byte starts with a start bit (logic 0, low level on SWP) and ends with a stop bit (logic 1, high level on SWP). The bit time is calculated by measuring the time from the beginning of start bit (1 to 0 transition) to the end of the sync frame (1 to 0 transition from bit 2 to bit 3). All data is transmitted byte wise. The 32 bit data words are transmitted with the highest byte first.

A minimum baud rate of 9000 baud is permissible, assuming 20 MHz clock (worst case for low baud rate). Maximum baud rate is $\mathrm{f}_{\text {cLK }} / 16$ due to the required stability of the baud clock.

The slave address is determined by the register SLAVEADDR. If the external address pin NEXTADDR is set, the slave address becomes incremented by one.

The communication becomes reset if a pause time of longer than 63 bit times between the start bits of two successive bytes occurs. This timing is based on the last correctly received datagram. In this case, the transmission needs to be restarted after a failure recovery time of minimum 12 bit times of bus idle time. This scheme allows the master to reset communication in case of transmission errors. Any pulse on an idle data line below 16 clock cycles will be treated as a glitch and leads to a timeout of 12 bit times, for which the data line must be idle. Other errors like wrong CRC are also treated the same way. This allows a safe re-synchronization of the transmission after any error conditions. Remark, that due to this mechanism an abrupt reduction of the baud rate to less than 15 percent of the previous value is not possible.

Each accepted write datagram becomes acknowledged by the receiver by incrementing an internal cyclic datagram counter (8 bit). Reading out the datagram counter allows the master to check the success of an initialization sequence or single write accesses. Read accesses do not modify the counter.

5.1.2 Read Access

UART READ ACCESS REQUEST DATAGRAM STRUCTURE																
each byte is LSB...MSB, highest byte transmitted first																
sync + reserved								8 bit slave address			RW + 7 bit register address			CRC		
0... 7								8... 15			16... 23			24... 31		
1	0	1	0	Reserved (don't cares but included in CRC)				SLAVEADDR			register address		0	CRC		
0	\checkmark	\sim	m	\pm	\cdots	\bigcirc	r	∞	:	$\stackrel{\sim}{\sim}$	\cdots	:	\cdots	~	:	-

The read access request datagram structure is identical to the write access datagram structure, but uses a lower number of user bits. Its function is the addressing of the slave and the transmission of the desired register address for the read access. The TMC5160 responds with the same baud rate as the master uses for the read request.

In order to ensure a clean bus transition from the master to the slave, the TMC5160 does not immediately send the reply to a read access, but it uses a programmable delay time after which the first reply byte becomes sent following a read request. This delay time can be set in multiples of eight bit times using SENDDELAY time setting (default=8 bit times) according to the needs of the master. In a multi-slave system, set SENDDELAY to min. 2 for all slaves. Otherwise a non-addressed slaves might detect a transmission error upon read access to a different slave.

The read response is sent to the master using address code \%1111. The transmitter becomes switched inactive four bit times after the last bit is sent.

Address \%11111111 is reserved for read accesses going to the master. A slave cannot use this address.
www.trinamic.com

published by WWW.SKYTECH.IR

5.2 CRC Calculation

An 8 bit CRC polynomial is used for checking both read and write access. It allows detection of up to eight single bit errors. The CRC8-ATM polynomial with an initial value of zero is applied LSB to MSB, including the sync- and addressing byte. The sync nibble is assumed to always be correct. The TMC5160 responds only to correctly transmitted datagrams containing its own slave address. It increases its datagram counter for each correctly received write access datagram.

$$
C R C=x^{8}+x^{2}+x^{1}+x^{0}
$$

Serial calculation example

$\mathrm{CRC}=(\mathrm{CRC} \ll 1)$ OR (CRC. 7 XOR CRC.1 XOR CRC. 0 XOR [new incoming bit])

5.3 UART Signals

The UART interface on the TMC5160 comprises four signals:

TMC5160 UART	INTERFACE SIGNALS
SWP	Non-inverted data input and output
SWN	Inverted data input and output for use in differential transmission. Can be left open in a 5V IO voltage system. Tie to the half IO level voltage for best performance in a 3.3 V single wire non-differential application.
SDI_CFG1 (NAI)	Address increment pin for chained sequential addressing scheme SDO_CFGO (NAO)Next address output pin for chained sequential addressing scheme (reset default= high)

In UART mode (SPI_MODE low and SD_MODE low) the slave checks the single wire SWP and SWN for correctly received datagrams with its own address continuously. Both signals are switched as input during this time. It adapts to the baud rate based on the sync nibble, as described before. In case of a read access, it switches on its output drivers on SWP and SWN and sends its response using the same baud rate.

5.4 Addressing Multiple Slaves

Addressing one or two Slaves

If only one or two TMC5160 are addressed by a master using a single UART interface, a hardware address selection can be done by setting the NAI pins of both devices to different levels.

Addressing up to 255 Slaves

A different approach can address any number of devices by using the input NAI as a selection pin. Addressing up to 255 units is possible.

Figure 5.1 Addressing multiple TMC5160 via single wire interface using chaining

Proceed as follows:

- Tie the NAI pin of your first TMC5160 to GND.
- Interconnect NAO output of the first TMC5160 to the next drivers NAI pin. Connect further drivers in the same fashion.
- Now, the first driver responds to address 0 . Following drivers are set to address 1.
- Program the first driver to its dedicated slave address. Note: once a driver is initialized with its slave address, its NAO output, which is tied to the next drivers NAI has to be programmed to logic 0 in order to differentiate the next driver from all following devices.
- Now, the second driver is accessible and can get its slave address. Further units can be programmed to their slave addresses sequentially.

Figure 5.2 Addressing multiple TMC5160 via the differential interface, additional filtering for NAI
A different scheme (not shown) uses bus switches (like 74HC4066) to connect the bus to the next unit in the chain without using the NAI input. The bus switch can be controlled in the same fashion, using the NAO output to enable it (low level shall enable the bus switch). Once the bus switch is enabled it allows addressing the next bus segment. As bus switches add a certain resistance, the maximum number of nodes will be reduced.

It is possible to mix different styles of addressing in a system. For example, a system using two boards with each two TMC5160 can have both devices on a board with a different level on NEXTADDR, while the next board is chained using analog switches separating the bus until the drivers on the first board have been programmed.

6 Register Mapping

This chapter gives an overview of the complete register set. Some of the registers bundling a number of single bits are detailed in extra tables. The functional practical application of the settings is detailed in dedicated chapters.

Note

- All registers become reset to 0 upon power up, unless otherwise noted.

Add 0×80 to the address Addr for write accesses!

Notation of hexadecimal and binary numbers	
0x	precedes a hexadecimal number, e.g. 0×04
\%	precedes a multi-bit binary number, e.g. \%100
\longrightarrow 边	
Notation of R/W field	
R	Read only
W	Write only
R/W	Read- and writable register
R+C	Clear upon read
Overview Register Mapping	
Register	DESCRIPTION
General Configuration Registers	These registers contain global configuration - global status flags - interface configuration - and I/O signal configuration
Ramp Generator Motion Control Register Set	This register set offers registers for - choosing a ramp mode - choosing velocities - homing - acceleration and deceleration - target positioning - reference switch and StallGuard2 event configuration - ramp and reference switch status
Velocity Dependent Driver Feature Control Register Set	This register set offers registers for - driver current control - setting thresholds for CoolStep operation - setting thresholds for different chopper modes - setting thresholds for DcStep operation
Encoder Register Set	The encoder register set offers all registers needed for proper ABN encoder operation.
Motor Driver Register Set \square	This register set offers registers for - setting / reading out microstep table and counter - chopper and driver configuration - CoolStep and StallGuard2 configuration - DcStep configuration - reading out StallGuard2 values and driver error flags

6.1 General Configuration Registers

www.trinamic.com

www.trinamic.com

[^0]

6.1.1 OTP_READ - OTP configuration memory

The OTP memory holds power up defaults for certain registers. All OTP memory bits are cleared to 0 by default. Programming only can set bits, clearing bits is not possible. Factory tuning of the clock frequency affects otp 0.0 to otp 0.4 . The state of these bits therefore may differ between individual ICs.

6.2 Velocity Dependent Driver Feature Control Register Set

Velo	DEP		ER FEATU	ROL REGISTER SET (0x10...0x1F)
R/W	Addr	n	Register	Description / bit names
W	0x13	20	TPWMTHRS	This is the upper velocity for StealthChop voltage PWM mode. TSTEP \geq TPWMTHRS - StealthChop PWM mode is enabled, if configured - DcStep is disabled
W	0x14	20	TCOOLTHRS	This is the lower threshold velocity for switching on smart energy CoolStep and StallGuard feature. (unsigned) Set this parameter to disable CoolStep at low speeds, where it cannot work reliably. The stop on stall function (enable with sg_stop when using internal motion controller) and the stall output signal become enabled when exceeding this velocity. In non-DcStep mode, it becomes disabled again once the velocity falls below this threshold. TCOOLTHRS \geq TSTEP \geq THIGH: CoolStep is enabled, if configured - StealthChop voltage PWM mode is disabled TCOOLTHRS \geq TSTEP - Stop on stall is enabled, if configured - Stall output signal (DIAG0/1) is enabled, if configured
W	0x15	20	THIGH	This velocity setting allows velocity dependent switching into a different chopper mode and fullstepping to maximize torque. (unsigned) The stall detection feature becomes switched off for 2-3 electrical periods whenever passing THIGH threshold to compensate for the effect of switching modes. TSTEP \leq THIGH: CoolStep is disabled (motor runs with normal current scale) StealthChop voltage PWM mode is disabled If vhighchm is set, the chopper switches to chm=1 with $T F D=0$ (constant off time with slow decay, only). If vhighfs is set, the motor operates in fullstep mode and the stall detection becomes switched over to DcStep stall detection.
Microstep velocity time reference t for velocities: TSTEP $=\mathrm{f}_{\text {cık }} / \mathrm{f}_{\text {STEP }}$				
				E E CTRONN C

6.3 Ramp Generator Registers

6.3.1 Ramp Generator Motion Control Register Set

RAMP GENERATOR MOTION CONTROL REGISTER SET (0x20...0x2D)					
R/W	Addr	n	Register	Description / bit names	Range [Unit]
RW	0×20	2	RAMPMODE	RAMPMODE: 0 : Positioning mode (using all A, D and V parameters) 1: Velocity mode to positive VMAX (using AMAX acceleration) 2: Velocity mode to negative VMAX (using AMAX acceleration) 3: Hold mode (velocity remains unchanged, unless stop event occurs)	0... 3
RW	0×21	32	XACTUAL	Actual motor position (signed) Hint: This value normally should only be modified, when homing the drive. In positioning mode, modifying the register content will start a motion.	$\begin{aligned} & -2^{\wedge} 31 \ldots \\ & +\left(2^{\wedge} 31\right)-1 \end{aligned}$
R	0×22	24	VACTUAL	Actual motor velocity from ramp generator (signed) The sign matches the motion direction. A negative sign means motion to lower XACTUAL.	$\begin{aligned} & +-\left(2^{\wedge} 23\right)-1 \\ & {[\mu \text { steps / } \mathrm{t}} \end{aligned}$
W	0×23	18	VSTART	Motor start velocity (unsigned) For universal use, set VSTOP \geq VSTART. This is not required if the motion distance is sufficient to ensure deceleration from VSTART to VSTOP.	$\begin{aligned} & 0 \ldots\left(2^{\wedge} 18\right)-1 \\ & {[\mu \text { steps } / \mathrm{t}]} \end{aligned}$
W	0×24	16	A1	First acceleration between VSTART and V1 (unsigned)	$\begin{aligned} & 0 . . .\left(2^{\wedge} 16\right)-1 \\ & {\left[\mu \text { steps } / \mathrm{ta}^{2}\right]} \end{aligned}$
W	0x25	20	V1	First acceleration $/$ deceleration phase threshold velocity (unsigned) 0 : Disables $A 1$ and D1 phase, use $A M A X, ~ D M A X$ only	$\begin{aligned} & 0 . . .\left(2^{\wedge} 20\right)-1 \\ & {[\mu \text { steps } / \mathrm{t}]} \end{aligned}$
W	0x26	16	AMAX	Second acceleration between V1 and VMAX (unsigned) This is the acceleration and deceleration value for velocity mode.	$0 . . .\left(2^{\wedge} 16\right)-1$ [μ steps / ta²]
W	0×27	23	VMAX	Motion ramp target velocity (for positioning ensure VMAX \geq VSTART) (unsigned) This is the target velocity in velocity mode. It can be changed any time during a motion.	$\begin{aligned} & 0 . . .\left(2^{\wedge} 23\right)-512 \\ & {[\mu \text { steps / t] }} \end{aligned}$
W	0×28	16	DMAX	Deceleration between VMAX and V1 (unsigned)	$\begin{aligned} & 0 \ldots\left({ }^{\wedge} 16\right)-1 \\ & {\left[\mu \text { steps } / \mathrm{ta}^{2}\right]} \end{aligned}$
W	0x2A	16	D1	Deceleration between V1 and VSTOP (unsigned) Attention: Do not set 0 in positioning mode, even if V1=0!	$\begin{aligned} & 1 . . .\left(2^{\wedge} 16\right)-1 \\ & {\left[\mu \text { steps } / \mathrm{ta}^{2}\right]} \end{aligned}$

www.trinamic.com

published by WWW.SKYTECH.IR

6.3.2 Ramp Generator Driver Feature Control Register Set

RAMP GENERATOR DRIVER FEATURE CONTROL REGISTER SET (0x30...0×36)				
R/W	Addr	n	Register	Description / bit names
W	0×33	23	VDCMIN	Automatic commutation DcStep becomes enabled above velocity VDCMIN (unsigned) (only when using internal ramp generator, not for STEP/DIR interface - in STEP/DIR mode, DcStep becomes enabled by the external signal DCEN) In this mode, the actual position is determined by the sensorless motor commutation and becomes fed back to XACTUAL. In case the motor becomes heavily loaded, VDCMIN also is used as the minimum step velocity. Activate stop on stall (sg_stop) to detect step loss. 0: Disable, DcStep off $\|V A C T\| \geq V D C M I N \geq 256:$ Triggers the same actions as exceeding THIGH setting. Switches on automatic commutation DcStep Hint: Also set DCCTRL parameters in order to operate DcStep. (Only bits $22 \ldots . .8$ are used for value and for comparison)
RW	0x34	12	SW_MODE	Switch mode configuration See separate table!
$\begin{gathered} \mathrm{R}+ \\ \mathrm{WC} \end{gathered}$	0x35	14	RAMP_ST	Ramp status and switch event status See separate table!
R	0×36	32	XLATCH	Ramp generator latch position, latches XACTUAL upon a programmable switch event (see SW_MODE). Hint: The encoder position can be latched to ENC_LATCH together with XLATCH to allow consistency checks.

Time reference t for velocities: $\mathrm{t}=\mathbf{2}^{\wedge} 24 / \mathrm{f}$ CLK
Time reference ta ${ }^{2}$ for accelerations: $\operatorname{ta}^{2}=2^{\wedge} 41 /\left(f_{\text {CLK }}\right)^{2}$

6.3.2.1 SW_MODE - Reference Switch \& StallGuard2 Event Configuration Register

	SW_MODE - REF	h and StallGuard? event configuration register
Bit	Name	Comment
11	en_softstop	0: Hard stop 1: Soft stop The soft stop mode always uses the deceleration ramp settings $D M A X, \mathrm{~V} 1$, D1, VSTOP and TZEROWAIT for stopping the motor. A stop occurs when the velocity sign matches the reference switch position (REFL for negative velocities, REFR for positive velocities) and the respective switch stop function is enabled. A hard stop also uses TZEROWAIT before the motor becomes released. Attention: Do not use soft stop in combination with StallGuard2. Use soft stop for StealthChop operation at high velocity. In this case, hard stop must be avoided, as it could result in severe overcurrent.
10	sg_st	1: Enable stop by StallGuard2 (also available in DcStep mode). Disable to release motor after stop event. Program TCOOLTHRS for velocity threshold. Hint: Do not enable during motor spin-up, wait until the motor velocity exceeds a certain value, where StallGuard2 delivers a stable result. This velocity threshold should be programmed using TCOOLTHRS.
9	en_latch_encoder	1: Latch encoder position to ENC_LATCH upon reference switch event.
8	latch_r_inactive	1: Activates latching of the position to XLATCH upon an inactive going edge on the right reference switch input REFR. The active level is defined by pol_stop_r.
7	latch_r_active	1: Activates latching of the position to XLATCH upon an active going edge on the right reference switch input REFR. Hint: Activate latch_r_active to detect any spurious stop event by reading status_latch_r.
6	latch___inactiv	1: Activates latching of the position to XLATCH upon an inactive going edge on the left reference switch input REFL. The active level is defined by pol_stop_l.
5	latch_l-	1: Activates latching of the position to XLATCH upon an active going edge on the left reference switch input REFL. Hint: Activate latch___active to detect any spurious stop event by reading status latch l.
4	swap_lr	1: Swap the left and the right reference switch input REFL and REFR
3	pol_stop_r	Sets the active polarity of the right reference switch input $0=$ non-inverted, high active: a high level on REFR stops the motor 1=inverted, low active: a low level on REFR stops the motor
2	pol_stop_l	Sets the active polarity of the left reference switch input $0=$ non-inverted, high active: a high level on REFL stops the motor 1=inverted, low active: a low level on REFL stops the motor
1	stop_r_enable	1: Enables automatic motor stop during active right reference switch input Hint: The motor restarts in case the stop switch becomes released.
0	stop_l_enable	1: Enables automatic motor stop during active left reference switch input Hint: The motor restarts in case the stop switch becomes released.

6.3.2.2 RAMP_STAT - Ramp \& Reference Switch Status Register

0x35: RAMP_STAT - RAMP AND REFERENCE SWITCH STATUS REGISTER			
R/W	Bit	Name	Comment
R	13	status_sg	1: Signals an active StallGuard2 input from the CoolStep driver or from the DcStep unit, if enabled. Hint: When polling this flag, stall events may be missed - activate sg_stop to be sure not to miss the stall event.
$\begin{gathered} \mathrm{R}+ \\ \mathrm{WC} \end{gathered}$	12	second_move	1: Signals that the automatic ramp required moving back in the opposite direction, e.g. due to on-the-fly parameter change (Write '1' to clear)
R	11	t_zerowait_ active	1: Signals, that TZEROWAIT is active after a motor stop. During this time, the motor is in standstill.
R	10	vzero	1: Signals, that the actual velocity is 0 .
R	9	position_ reached	1: Signals, that the target position is reached. This flag becomes set while XACTUAL and XTARGET match.
R	8	velocity_ reached	1: Signals, that the target velocity is reached. This flag becomes set while VACTUAL and VMAX match.
$\begin{gathered} \mathrm{R}_{+} \\ \mathrm{WC} \end{gathered}$	7	event_pos_ reached	1: Signals, that the target position has been reached (position_reached becoming active). (Write ' 1 ' to clear flag and interrupt condition) This bit is ORed to the interrupt output signal.
$\begin{gathered} \mathrm{R}_{+} \\ \mathrm{WC} \end{gathered}$	6	$\begin{aligned} & \text { event_stop_ } \\ & \text { sg } \end{aligned}$	1: Signals an active StallGuard2 stop event. Resetting the register will clear the stall condition and the motor may re-start motion, unless the motion controller has been stopped. (Write ' 1 ' to clear flag and interrupt condition) This bit is ORed to the interrupt output signal.
R	5	event_stop_r	1: Signals an active stop right condition due to stop switch. The stop condition and the interrupt condition can be removed by setting RAMP_MODE to hold mode or by commanding a move to the opposite direction. In soft_stop mode, the condition will remain active until the motor has stopped motion into the direction of the stop switch. Disabling the stop switch or the stop function also clears the flag, but the motor will continue motion. This bit is ORed to the interrupt output signal.
	4	event_stop_l	1: Signals an active stop left condition due to stop switch. The stop condition and the interrupt condition can be removed by setting RAMP_MODE to hold mode or by commanding a move to the opposite direction. In soft_stop mode, the condition will remain active until the motor has stopped motion into the direction of the stop switch. Disabling the stop switch or the stop function also clears the flag, but the motor will continue motion. This bit is ORed to the interrupt output signal.
R+ WC	3	status_latch_r	```1: Latch right ready (enable position latching using SW_MODE settings latch_r_active or latch_r_inactive) (Write '1' to clear)```
	2	status_latch_l	1: Latch left ready (enable position latching using SW_MODE settings latch_l_active or latch_l_inactive) (Write '1' to clear)
R	1	status_stop_r	Reference switch right status (1=active)
	0	status_stop_l	Reference switch left status (1=active)

www.trinamic.com

6.4 Encoder Registers

Attention:

The encoder interface is not available in Step\&Direction mode, as the encoder pins serve a different function in that mode.

ENCODER REGISTER SET (0x38...0x3C)					
R/W	Addr	n	Register	Description / bit names	Range [Unit]
RW	0x38	11	ENCMODE	Encoder configuration and use of N channel See separate table!	
RW	0x39	32	X_ENC	Actual encoder position (signed)	$\begin{aligned} & -2^{\wedge} 31 \ldots \\ & +\left(2^{\wedge} 31\right)-1 \end{aligned}$
W	0x3A	32	ENC_CONST	Accumulation constant (signed) 16 bit integer part, 16 bit fractional part X_ENC accumulates +/- ENC_CONST I (2^16*X_ENC) (binary) or +/-ENC_CONST I (10^4*X_ENC) (decimal) ENCMODE bit enc_sel_decimal switches between decimal and binary setting. Use the sign, to match rotation direction!	binary: $\pm\left[\mu\right.$ steps $\left./ 2^{\wedge} 16\right]$ \pm (0 ... 32767.999847) decimal: \pm (0.0 ... 32767.9999) reset default = 1.0 (=65536)
$\begin{gathered} \mathrm{R}+ \\ \mathrm{WC} \end{gathered}$	$0 \times 3 B$	2	ENC_STATU	Encoder status information bit 0: n_event bit 1: deviation_warn 1: Event detected. To clear the status bit, write with a 1 bit at the corresponding position. Deviation_warn cannot be cleared while a warning still persists. Set ENC_DEVIATION zero to disable. Both bits are ORed to the interrupt output signal.	
R	0x3C	32	ENC_LATCH	Encoder position X_ENC latched on N event	
W	Ox3D	20	ENC DEVIATION	Maximum number of steps deviation between encoder counter and XACTUAL for deviation warning Result in flag ENC_STATUS.deviation_warn $0=$ Function is off.	

6.4.1 ENCMODE - Encoder Register

6.5 Motor Driver Registers

R/W	Addr	n	Register	Description I bit names	Range [Unit]
W	0x60	32	MSLUT[0] microstep table entries 0... 31	Each bit gives the difference between entry x and entry $\mathrm{x}+1$ when combined with the corresponding MSLUTSEL W bits: $\begin{aligned} 0: W=\begin{array}{r} \\ \% 00:-1 \\ \\ \% 01:+0 \\ \\ \% 10:+1 \\ \\ \% 11:+2 \\ 1: W= \\ \% 00:+0 \\ \\ \% 01:+1 \\ \\ \% 10:+2 \\ \\ \% 11:+3 \end{array} \end{aligned}$ This is the differential coding for the first quarter of a wave. Start values for CUR_A and CUR_B are stored for MSCNT position 0 in START_SIN and START_SIN90. ofs31, ofs30, ..., ofs01, ofs00 ofs255, ofs254, ..., ofs225, ofs224	$32 x 0$ or 1 reset default= sine wave table
W	$\begin{gathered} 0 \times 61 \\ 0 \times 67 \end{gathered}$	$\begin{gathered} 7 \\ x \\ 32 \end{gathered}$	MSLUT[1...7] microstep table entries 32... 255		$7 x$ $32 x 0$ or 1 reset default= sine wave table
W	0×68	32	MSLUTSEL	This register defines four segments within each quarter MSLUT wave. Four 2 bit entries determine the meaning of a 0 and a 1 bit in the corresponding segment of MSLUT. See separate table!	$0<X 1<X 2<X 3$ reset default= sine wave table
W	0x69	8	MSLUTSTART	bit 7... 0: START_SIN bit 23... 16: START_SIN90 START_SIN gives the absolute current at microstep table entry 0. START_SIN90 gives the absolute current for microstep table entry at positions 256 . Start values are transferred to the microstep registers CUR_A and CUR_B, whenever the reference position MSCNT=0 is passed.	```START_SIN reset default =0 START_SIN90 reset default =247```
R	$0 \times 6 \mathrm{~A}$	10	MSCNT	Microstep counter. Indicates actual position in the microstep table for CUR_A. CUR_B uses an offset of 256 (2 phase motor). Hint: Move to a position where MSCNT is zero before re-initializing MSLUTSTART or MSLUT and MSLUTSEL.	$0 . . .1023$
R	$0 \times 6 \mathrm{~B}$	9	MSCURACT	bit 8... 0: CUR_A (signed): Actual microstep current for motor phase A as read from MSLUT (not scaled by current) bit 24... 16: CUR_B (signed): Actual microstep current for motor phase B as read from MSLUT (not scaled by current)	\pm +-0... 255

DRIVER REGISTER SET (0x6C...0x7F)					
R/W	Addr	n	Register	Description / bit names	Range [Unit]
RW	0x6C	32	CHOPCONF	chopper and driver configuration See separate table!	$\begin{aligned} & \text { reset default= } \\ & 0 \times 10410150 \end{aligned}$
W	0x6D	25	COOLCONF	CoolStep smart current control register and StallGuard2 configuration See separate table!	
W	0x6E	24	DCCTRL	DcStep (DC) automatic commutation configuration register (enable via pin DCEN or via VDCMIN): bit 9... 0: DC_TIME: Upper PWM on time limit for commutation (DC_TIME * 1/fclu). Set slightly above effective blank time TBL. bit 23... 16: DC_SG: Max. PWM on time for step loss detection using DcStep StallGuard2 in DcStep mode. (DC_SG * 16/f_CLK) Set slightly higher than DC_TIME/16 $0=$ disable Hint: Using a higher microstep resolution or interpolated operation, DcStep delivers a better StallGuard signal. DC_SG is also available above VHIGH if vhighfs is activated. For best result also set vhighchm.	
R	0x6F	32	$\begin{aligned} & \text { DRV } \\ & \text { STATUS } \end{aligned}$	StallGuard2 value and driver error flags See separate table!	
W	0x70	22	PWMCONF	Voltage PWM mode chopper configuration See separate table!	reset default= 0xC40C001E
R	0x71	9+8	PWM_SCAL	Results of StealthChop amplitude regulator. These values can be used to monitor automatic PWM amplitude scaling (255=max. voltage).	$0 . . .255$ signed $-255 \ldots+255$
R	0x72	8+8	PWM_AUTO	These automatically generated values can be read out in order to determine a default I power up setting for PWM_GRAD and PWM_OFS.	
				bit 7... 0 PWM_OFS_AUTO: Automatically determined offset value	0...255

www.trinamic.com

DRIVER REGISTER SET (0x6C...0x7F)						
R/W	Addr	n	Register	Description / bit names		Range [Unit]
				bit 23... 16	PWM_GRAD_AUTO:Automatically gradient value	0... 255
R	0x73	20	LOST_STEPS	Number of load in DcSt not stop wh wraps arou down dep SDMODE=1.	nput steps skipped due to higher tep operation, if step input does hen DC_OUT is low. This counter nd after $2^{\wedge} 20$ steps. Counts up or nding on direction. Only with	

Microstep table calculation for a sine wave equivalent to the power on default
round $\left(248 * \sin \left(2 * P I * \frac{i}{1024}+\frac{P I}{1024}\right)\right)-1$
$i:[0 . . .255]$ is the table index

- The amplitude of the wave is 248 . The resulting maximum positive value is 247 and the maximum negative value is -248 .
- The round function rounds values from 0.5 to 1.4999 to 1

6.5.1 MSLUTSEL - Look up Table Segmentation Definition

Bit	Name	Function	Comment
31	X3	LUT segment 3 start	The sine wave look up table can be divided into up to four segments using an individual step width control entry $W x$. The segment borders are selected by $X 1, X 2$ and X3.
30			
29			
28			
27			
26			Segment 0 goes from 0 to X1-1.
25			Segment 1 goes from X1 to X2-1.
24			Segment 2 goes from X2 to X3-1.
23	X2	LUT segment 2 start	Segment 3 goes from $X 3$ to 255.
22			
21			For defined response the values shall satisfy:
20			$0<X 1<X 2<X 3$
19			
18			
17			
16			
15	X1	LUT segment 1 start	
14			
13			
12			\sim
10			
9			
8			
7	W3	LUT width select from ofs(X3) to ofs255	Width control bit coding W0...W3: $\% 00$: MSLUT entry 0,1 select: $-1,+0$ \%01: MSLUT entry 0,1 select: $+0,+1$ \%10: MSLUT entry 0,1 select: $+1,+2$ \%11: MSLUT entry 0,1 select: $+2,+3$
6			
5	W2	LUT width select from	
4		ofs(X2) to ofs(X3-1)	
3	W1	LUT width select from	
2		$\text { ofs }(X 1) \text { to ofs }(X 2-1)$	
1	W0	LUT width select from	
0		ofs00 to ofs(X1-1)	

6.5.2 CHOPCONF - Chopper Configuration

0x6C: CHOPCONF - Chopper Configuration			
Bit	Name	Function	Comment
31	diss2vs	short to supply protection disable	0 : Short to VS protection is on 1: Short to VS protection is disabled
30	diss2g	short to GND protection disable	0 : Short to GND protection is on 1: Short to GND protection is disabled
29	dedge	enable double edge step pulses	1: Enable step impulse at each step edge to reduce step frequency requirement.
28	intpol	interpolation to 256 microsteps	1: The actual microstep resolution (MRES) becomes extrapolated to 256 microsteps for smoothest motor operation (useful for STEPIDIR operation, only)
27	mres3	MRES micro step resolution	$\% 0000:$ Native 256 microstep setting. Normally use this setting with the internal motion controller.
26	mres?		
25	mres1		
24	mres0		\%0001 ... \%1000: 128, 64, 32, 16, 8, 4, 2, FULLSTEP Reduced microstep resolution esp. for STEP/DIR operation. The resolution gives the number of microstep entries per sine quarter wave. The driver automatically uses microstep positions which result in a symmetrical wave, when choosing a lower microstep resolution. step width=2^MRES [microsteps]
23	tpfd3		TPFD allows dampening of motor mid-range resonances. Passive fast decay time setting controls duration of the fast decay phase inserted after bridge polarity change $N_{\text {cıK }}=128^{*} T P F D$ \%0000: Disable $\text { \%0001 ... \%1111: } 1 \text {... } 15$
22	tpfd2		
21	tpdf1		
20	tpfd0		
19	vhighchm	high velocity chopp mode	This bit enables switching to $c h m=1$ and $f d=0$, when VHIGH is exceeded. This way, a higher velocity can be achieved. Can be combined with vhighfs=1. If set, the TOFF setting automatically becomes doubled during high velocity operation in order to avoid doubling of the chopper frequency.
18	vhighfs	high velocity fullst selection	This bit enables switching to fullstep, when VHIGH is exceeded. Switching takes place only at 45° position. The fullstep target current uses the current value from the microstep table at the 45° position.
17		reserved	reserved, set to 0
16	tbl1	TBL blank time select	\%00 ... \%11: Set comparator blank time to $16,24,36$ or 54 clocks Hint: \%01 or \%10 is recommended for most applications
15	tbl0		
14	chm	chopper mode	Hint: \%01 or \%10 is recommended for most applications
			1 Constant off time with fast decay time. Fast decay time is also terminated when the negative nominal current is reached. Fast decay is after on time.
13	-	reserved	Reserved, set to 0
12	disfdcc	fast decay mode	chm=1: disfdcc=1 disables current comparator usage for termination of the fast decay cycle
11	fd3	TFD [3]	chm=1: MSB of fast decay time setting TFD

www.trinamic.com

published by WWW.SKYTECH.IR

0x6C: CHOPCONF - Chopper Configuration				
Bit	Name	Function	Comme	
10	hend3	HEND hysteresis low value OFFSET sine wave offset	chm=0	\%0000 ... \%1111:
9	hend2			Hysteresis is $-3,-2,-1,0,1, \ldots, 12$
8	hend1			(1/512 of this setting adds to current setting)
7	hend0			This is the hysteresis value which becomes used for the hysteresis chopper.
			chm=1	\%0000 ... \%1111: Offset is $-3,-2,-1,0,1, \ldots, 12$ This is the sine wave offset and $1 / 512$ of the value becomes added to the absolute value of each sine wave entry.
6	hstrt2	HSTRT	chm=0	\%000 ... \%111:
5	hstrt1	hysteresis start value added to HEND		Add 1, 2, ..., 8 to hysteresis low value HEND
4	hstrt0			($1 / 512$ of this setting adds to current setting) Attention: Effective HEND+HSTRT ≤ 16. Hint: Hysteresis decrement is done each 16 clocks
		TFD [2..0] fast decay time setting	chm=1	Fast decay time setting (MSB: fd3): \%0000 ... \%1111: Fast decay time setting TFD with $\mathrm{N}_{\mathrm{CLK}}=32 *$ TFD (\%0000: slow decay only)
3	toff3	TOFF off time	Off time	etting controls duration of slow decay phase
2	toff2	and driver enable	Ncık $=24$	32*TOFF
1	toff1		\%0000:	iver disable, all bridges off
0	toff0		$\begin{aligned} & \% 0001: \\ & \% 0010 \end{aligned}$	- use only with $T B L \geq 2$ \%1111: 2 ... 15

6.5.3 COOLCONF - Smart Energy Control CoolStep and StallGuard2

6.5.4 PWMCONF - Voltage PWM Mode StealthChop

www.trinamic.com

6.5.5
DRV_STATUS - StallGuard2 Value and Driver Error Flags

www.trinamic.com

7 StealthChop ${ }^{\text {TM }}$

StealthChop is an extremely quiet mode of operation for stepper motors. It is based on a voltage mode PWM. In case of standstill and at low velocities, the motor is absolutely noiseless. Thus, StealthChop operated stepper motor applications are very suitable for indoor or home use. The motor operates absolutely free of vibration at low velocities. With StealthChop, the motor current is applied by driving a certain effective voltage into the coil, using a voltage mode PWM. With the enhanced StealthChop2, the driver automatically adapts to the application for best performance. No more configurations are required. Optional configuration allows for tuning the setting in special cases, or for storing initial values for the automatic adaptation algorithm. For high velocity drives SpreadCycle should be considered in combination with StealthChop.

Figure 7.1 Motor coil sine wave current with StealthChop (measured with current probe)

7.1 Automatic Tuning

StealthChop2 integrates an automatic tuning procedure (AT), which adapts the most important operating parameters to the motor automatically. This way, StealthChop2 allows high motor dynamics and supports powering down the motor to very low currents. Just two steps have to be respected by the motion controller for best results: Start with the motor in standstill, but powered with nominal run current (AT\#1). Move the motor at a medium velocity, e.g. as part of a homing procedure (AT\#2). Figure 7.2 shows the tuning procedure.
Border conditions for AT\#1 and AT\#2 are shown in the following table:

Automatic Tuning Timing and Border Conditions			
Step	Parameter	Conditions	Required
AT\#1		- Motor in standstill and actual current scale (CS) is identical to run current (IRUN). - If standstill reduction is enabled, an initial step pulse switches the drive back to run current, or set IHOLD to IRUN. - Pin VS at operating level. Attention: Driver may reduce chopper frequency during AT\#1. Use reduced standstill current $I H O L D<I R U N$ to prevent extended periods of time at lower chopper frequency	$\begin{aligned} & \leq 2^{\wedge} 20+2^{*} 2^{\wedge} 18 \mathrm{t}_{\mathrm{CLK}} \\ & \leq 130 \mathrm{~ms} \\ & \text { (with internal clocl } \end{aligned}$
AT\#2		- Move motor at a velocity, where a significant amount of back EMF is generated and where the full run current can be reached. Conditions: - 1.5 * PWM_OFS_AUTO < PWM_SCALE_SUM 4 * PWM_OFS_AUTO - PWM_SCALE_SUM < 255. Hint: A typical range is $60-300$ RPM.	8 fullsteps are required for a change of $+/-1$. For a typical motor with PWM_GRAD_AUTO optimum at 50 or less, up to 400 fullsteps are required when starting from default value 0 .
Hint: Determine best conditions for automatic tuning with the evaluation board. Use application specific parameters for PWM_GRAD and PWM_OFS for initialization in firmware to provide initial tuning parameters. Monitor PWM_SCALE_AUTO going down to zero during the constant velocity phase in AT\#2 tuning. This indicates a successful tuning.			
Attention: Operating in StealthChop without proper tuning can lead to high motor currents during a deceleration ramp, especially with low resistive motors and fast deceleration settings. Follow the automatic tuning process and check optimum tuning conditions using the evaluation board. It is recommended to use an initial value for settings PWM_OFS and PWM_GRAD determined per motor type. Protect the power stage and supply by additionally tuning the overcurrent protection.			

Known Limitations TMC5160 non-A-version only:
Successful completion of AT\#1 tuning phase is not safely detected by the TMC5160. It will require multiple motor start / stop events to safely detect completion.
Successful determination is mandatory for AT\#2: Tuning of PWM_GRAD will not start when AT\#1 has not completed.
Successful completion of AT\#1 and AT\#2 only can be checked by monitoring PWM_SCALE_AUTO approaching 0 during AT\#2 motion.

Solution a):

Complete automatic tuning phase AT\#1 process, by using a slow-motion sequence which leads to standstill detection in between of each two steps. Use a velocity of $8(6 \mathrm{~Hz})$ or lower and execute minimum 10 steps during AT\#1 phase.

Solution b):

Store initial parameters for PWM_GRAD_AUTO for the application. Therefore, use the motor and operating conditions determined for the application and do a complete automatic tuning sequence (refer to a)). Store the resulting $P W M_{-} G R A D_{-} A U T O$ value and use it for initialization of PWM_GRAD. With this, tuning of AT\#2 phase is not mandatory in the application and can be skipped. Automatic tuning will further optimize settings during operation. Combine with a) if desired.

Figure 7.2 StealthChop2 automatic tuning procedure

Attention

Modifying GLOBALSCALER or VS voltage invalidates the result of the automatic tuning process. Motor current regulation cannot compensate significant changes until next AT\#1 phase. Automatic tuning adapts to changed conditions whenever AT\#1 and AT\#2 conditions are fulfilled in the later operation.

7.2 StealthChop Options

In order to match the motor current to a certain level, the effective PWM voltage becomes scaled depending on the actual motor velocity. Several additional factors influence the required voltage level to drive the motor at the target current: The motor resistance, its back EMF (i.e. directly proportional to its velocity) as well as the actual level of the supply voltage. Two modes of PWM regulation are provided: The automatic tuning mode (AT) using current feedback (pwm_autoscale $=1$, pwm_autograd $=1$) and a feed forward velocity-controlled mode (pwm_autoscale = 0). The feed forward velocitycontrolled mode will not react to a change of the supply voltage or to events like a motor stall, but it provides very stable amplitude. It does not use nor require any means of current measurement. This is perfect when motor type and supply voltage are well known. Therefore, we recommend the automatic mode, unless current regulation is not satisfying in the given operating conditions.

It is recommended to use application specific initial tuning parameters, fitting the motor type and supply voltage. Additionally, operate in automatic tuning mode in order to respond to parameter change, e.g. due to motor heat-up or change of supply voltage.
Non-automatic mode (pwm_autoscale=0) should be taken into account only with well-known motor and operating conditions. In this case, careful programming via the interface is required. The operating parameters PWM_GRAD and PWM_OFS can be determined in automatic tuning mode initially.

The StealthChop PWM frequency can be chosen in four steps in order to adapt the frequency divider to the frequency of the clock source. A setting in the range of $20-50 \mathrm{kHz}$ is good for most applications. It balances low current ripple and good higher velocity performance vs. dynamic power dissipation.

Choice of PWM frequency for StealthChop				
Clock frequency fcık	PWM_FREQ=\%00 $\mathrm{f}_{\mathrm{PWM}}=2 / 1024 \mathrm{f}$ CLK	PWM_FREQ=\%01 $\mathrm{f}_{\text {PWM }}=2 / 683 \mathrm{f}_{\mathrm{CLK}}$	$\begin{aligned} & \text { PWM_FREQ=\%10 } \\ & \mathrm{f}_{\text {PWM }}=2 / 512 \mathrm{f}_{\mathrm{CLK}} \end{aligned}$	$\begin{aligned} & \text { PWM_FREQ=\%11 } \\ & \mathrm{f}_{\text {PWM }}=2 / 410 \mathrm{f}_{\mathrm{CLK}} \end{aligned}$
18 MHz	35.2 kHz	52.7 kHz	70.3 kHz	87.8 kHz
16 MHz	31.3 kHz	46.9 kHz	62.5 kHz	78.0 kHz
12 MHz (internal)	23.4 kHz	35.1 kHz	46.9 kHz	58.5 kHz
10 MHz	19.5 kHz	29.3 kHz	39.1 kHz	48.8 kHz
8MHz	15.6 kHz	23.4 kHz	31.2 kHz	39.0 kHz

Table 7.1 Choice of PWM frequency - green / light green: recommended

7.3 StealthChop Current Regulator

In StealthChop voltage PWM mode, the autoscaling function (pwm_autoscale =1, pwm_auto_grad =1) regulates the motor current to the desired current setting. Automatic scaling is used as part of the automatic tuning process (AT), and for subsequent tracking of changes within the motor parameters. The driver measures the motor current during the chopper on time and uses a proportional regulator to regulate PWM_SCALE_AUTO in order match the motor current to the target current. PWM_REG is the proportionality coefficient for this regulator. Basically, the proportionality coefficient should be as small as possible in order to get a stable and soft regulation behavior, but it must be large enough to allow the driver to quickly react to changes caused by variation of the motor target current (e.g. change of VREF). During initial tuning step AT\#2, PWM_REG also compensates for the change of motor velocity. Therefore, a high acceleration during AT\#2 will require a higher setting of PWM_REG. With careful selection of homing velocity and acceleration, a minimum setting of the regulation gradient often is sufficient ($P W M_{-} R E G=1$). PWM_REG setting should be optimized for the fastest required acceleration and deceleration ramp (compare Figure 7.3 and Figure 7.4). The quality of the setting PWM_REG in phase AT\#2 and the finished automatic tuning procedure (or non-automatic settings for PWM_OFS and PWM_GRAD) can be examined when monitoring motor current during an acceleration phase Figure 7.5.

Figure 7.3 Scope shot: good setting for PWM_REG

Figure 7.4 Scope shot: too small setting for PWM_REG during AT\#2

Figure 7.5 Successfully determined PWM_GRAD(_AUTO) and PWM_OFS(_AUTO)

Quick Start

For a quick start, see the Quick Configuration Guide in chapter 22.

7.3.1 Lower Current Limit

The StealthChop current regulator imposes a lower limit for motor current regulation. As the coil current can be measured in the shunt resistor during chopper on phase only, a minimum chopper duty cycle allowing coil current regulation is given by the blank time as set by $T B L$ and by the chopper frequency setting. Therefore, the motor specific minimum coil current in StealthChop autoscaling mode rises with the supply voltage and with the chopper frequency. A lower blanking time allows a lower current limit. It is important for the correct determination of PWM_OFS_AUTO, that in AT\#1 the run current set by the sense resistor, GLOBALSCALER and IRUN is well within the regulation range. Lower currents (e.g. for standstill power down) are automatically realized based on PWM_OFS_AUTO and PWM_GRAD_AUTO respectively based on PWM_OFS and PWM_GRAD with nonautomatic current scaling. The freewheeling option allows going to zero motor current.

Lower motor coil current limit for StealthChop2 automatic tuning:

$$
I_{\text {Lower Limit }}=t_{\text {BLANK }} * f_{P W M} * \frac{V_{M}}{R_{\text {COIL }}}
$$

With V_{M} the motor supply voltage and $\mathrm{R}_{\text {coil }}$ the motor coil resistance.
$I_{\text {Lower Limit }}$ can be treated as a thumb value for the minimum nominal IRUN motor current setting. In case the lower current limit is not sufficient to reach the desired setting, the driver will retry with a lower chopper frequency in step AT\#1, only.
$f_{\text {PWM }}$ is the chopper frequency as determined by setting PWM_FREQ. In AT\#1, the driver tries a lower, (roughly half frequency), in case it cannot reach the current. The frequency will remain active in standstill, while currentscale CS=IRUN. With automatic standstill reduction, this is a short moment.

ExAMPLE:

A motor has a coil resistance of 5Ω, the supply voltage is 24 V . With $T B L=\% 01$ and $P W M _F R E Q=\% 00$, tblank is 24 clock cycles, $\mathrm{f}_{\text {PWm }}$ is $2 /(1024$ clock cycles $)$:

$$
I_{\text {Lower Limit }}=24 t_{C L K} * \frac{2}{1024 t_{C L K}} * \frac{24 \mathrm{~V}}{5 \Omega}=\frac{24}{512} * \frac{24 \mathrm{~V}}{5 \Omega}=225 \mathrm{~mA}
$$

This means, the motor target current for automatic tuning must be 225 mA or more, taking into account all relevant settings. This lower current limit also applies for modification of the motor current via the GLOBALSCALER.

Attention

For automatic tuning, a lower coil current limit applies. The motor current in automatic tuning phase AT\#1 must exceed this lower limit. I Lower limit can be calculated or measured using a current probe. Setting the motor run-current or hold-current below the lower current limit during operation by modifying IRUN and IHOLD is possible after successful automatic tuning.

The lower current limit also limits the capability of the driver to respond to changes of GLOBALSCALER.

7.4 Velocity Based Scaling

Velocity based scaling scales the StealthChop amplitude based on the time between each two steps, i.e. based on TSTEP, measured in clock cycles. This concept basically does not require a current measurement, because no regulation loop is necessary. A pure velocity-based scaling is available via programming, only, when setting pwm_autoscale $=0$. The basic idea is to have a linear approximation of the voltage required to drive the target current into the motor. The stepper motor has a certain coil resistance and thus needs a certain voltage amplitude to yield a target current based on the basic formula $I=U / R$. With R being the coil resistance, U the supply voltage scaled by the PWM value, the current I results. The initial value for $P W M_{-} O F S$ can be calculated:

$$
P W M_{-} O F S=\frac{374 * R_{\text {COIL }} * I_{\text {COIL }}}{V_{M}}
$$

With V_{M} the motor supply voltage and $\mathrm{I}_{\text {coil }}$ the target RMS current
The effective PWM voltage $U_{\text {PWM }}(1 / S Q R T(2) \times$ peak value) results considering the 8 bit resolution and 248 sine wave peak for the actual PWM amplitude shown as PWM_SCALE:

With rising motor velocity, the motor generates an increasing back EMF voltage. The back EMF voltage is proportional to the motor velocity. It reduces the PWM voltage effective at the coil resistance and thus current decreases. The TMC5160 provides a second velocity dependent factor (PWM_GRAD) to compensate for this. The overall effective PWM amplitude (PWM_SCALE_SUM) in this mode automatically is calculated in dependence of the microstep frequency as:

$$
P W M_{-} S C A L E_{-} S U M=P W M_{-} O F S+P W M_{-} G R A D * 256 * \frac{f_{S T E P}}{f_{C L K}}
$$

With $\mathrm{f}_{\text {Step }}$ being the microstep frequency for 256 microstep resolution equivalent and $f_{\text {cLK }}$ the clock frequency supplied to the driver or the actual internal frequency

As a first approximation, the back EMF subtracts from the supply voltage and thus the effective current amplitude decreases. This way, a first approximation for PWM_GRAD setting can be calculated:

$C_{\text {BEMF }}$ is the back EMF constant of the motor in Volts per radian/second.
MSPR is the number of microsteps per rotation, e.g. $51200=256 \mu$ steps multiplied by 200 fullsteps for a 1.8° motor.

Figure 7.6 Velocity based PWM scaling (pwm_autoscale=0)

Hint

The values for PWM_OFS and PWM_GRAD can easily be optimized by tracing the motor current with a current probe on the oscilloscope. Alternatively, automatic tuning determines these values and they can be read out from PWM_OFS_AUTO and PWM_GRAD_AUTO.

Understanding the back EMF constant of a motor

The back EMF constant is the voltage a motor generates when turned with a certain velocity. Often motor datasheets do not specify this value, as it can be deducted from motor torque and coil current rating. Within SI units, the numeric value of the back EMF constant $C_{B E M F}$ has the same numeric value as the numeric value of the torque constant. For example, a motor with a torque constant of $1 \mathrm{Nm} / \mathrm{A}$ would have a $C_{\text {BEMF }}$ of $1 \mathrm{~V} / \mathrm{rad} / \mathrm{s}$. Turning such a motor with $1 \mathrm{rps}(1 \mathrm{rps}=1$ revolution per second $=$ $6.28 \mathrm{rad} / \mathrm{s}$) generates a back EMF voltage of 6.28 V . Thus, the back EMF constant can be calculated as:

$$
C_{\text {BEMF }}\left[\frac{\mathrm{V}}{\mathrm{rad} / \mathrm{s}}\right]=\frac{\text { HoldingTorque }[\mathrm{Nm}]}{2 * I_{\text {COILNOM }}[A]}
$$

I $_{\text {coilnom }}$ is the motor's rated phase current for the specified holding torque
HoldingTorque is the motor specific holding torque, i.e. the torque reached at $\mathrm{I}_{\text {coilnom }}$ on both coils. The torque unit is $[\mathrm{Nm}]$ where $1 \mathrm{Nm}=100 \mathrm{Ncm}=1000 \mathrm{mNm}$.
The voltage is valid as RMS voltage per coil, thus the nominal current is multiplied by 2 in this formula, since the nominal current assumes a full step position, with two coils operating.

7.5 Combining StealthChop and SpreadCycle 0 N\| C_{R}

For applications requiring high velocity motion, SpreadCycle may bring more stable operation in the upper velocity range. To combine no-noise operation with highest dynamic performance, the TMC5160 allows combining StealthChop and SpreadCycle based on a velocity threshold (Figure 7.7). With this, StealthChop is only active at low velocities.

As a first step, both chopper principles should be parameterized and optimized individually. In a next step, a transfer velocity has to be fixed. For example, StealthChop operation is used for precise low speed positioning, while SpreadCycle shall be used for highly dynamic motion. TPWMTHRS determines the transition velocity. Read out TSTEP when moving at the desired velocity and program the resulting value to TPWMTHRS. Use a low transfer velocity to avoid a jerk at the switching point.
A jerk occurs when switching at higher velocities, because the back-EMF of the motor (which rises with the velocity) causes a phase shift of up to 90° between motor voltage and motor current. So when switching at higher velocities between voltage PWM and current PWM mode, this jerk will occur with increased intensity. A high jerk may even produce a temporary overcurrent condition (depending on the motor coil resistance). At low velocities (e.g. 1 to a few 10 RPM), it can be completely neglected for most motors. Therefore, consider the switching jerk when choosing TPWMTHRS. Set TPWMTHRS zero if you want to work with StealthChop only.
When enabling the StealthChop mode the first time using automatic current regulation, the motor must be at stand still in order to allow a proper current regulation. When the drive switches to StealthChop at a higher velocity, StealthChop logic stores the last current regulation setting until the motor returns to a lower velocity again. This way, the regulation has a known starting point when returning to a lower velocity, where StealthChop becomes re-enabled. Therefore, neither the velocity threshold nor the supply voltage must be considerably changed during the phase while the chopper is switched to a different mode, because otherwise the motor might lose steps or the instantaneous current might be too high or too low.
A motor stall or a sudden change in the motor velocity may lead to the driver detecting a short circuit or to a state of automatic current regulation, from which it cannot recover. Clear the error flags and restart the motor from zero velocity to recover from this situation.

Hint

Start the motor from standstill when switching on StealthChop the first time and keep it stopped for at least 128 chopper periods to allow StealthChop to do initial standstill current control.

7.6 Flags in StealthChop

As StealthChop uses voltage mode driving, status flags based on current measurement respond slower, respectively the driver reacts delayed to sudden changes of back EMF, like on a motor stall.

Attention

A motor stall, or abrupt stop of the motion during operation in StealthChop can lead to a overcurrent condition. Depending on the previous motor velocity, and on the coil resistance of the motor, it significantly increases motor current for a time of several 10 ms . With low velocities, where the back EMF is just a fraction of the supply voltage, there is no danger of triggering the short detection.

Hint

Tune low side driver overcurrent detection to safely trigger upon motor stall, when using StealthChop. This will avoid high peak current draw from the power supply.

7.6.1 Open Load Flags

In StealthChop mode, status information is different from the cycle-by-cycle regulated SpreadCycle mode. OLA and OLB show if the current regulation sees that the nominal current can be reached on both coils.

- A flickering OLA or OLB can result from asymmetries in the sense resistors or in the motor coils.
- An interrupted motor coil leads to a continuously active open load flag for the coil.
- One or both flags are active, if the current regulation did not succeed in scaling up to the full target current within the last few fullsteps (because no motor is attached or a high velocity exceeds the PWM limit).

If desired, do an on-demand open load test using the SpreadCycle chopper, as it delivers the safest result. With StealthChop, PWM_SCALE_SUM can be checked to detect the correct coil resistance.

7.6.2 PWM_SCALE_SUM Informs about the Motor State

Information about the motor state is available with automatic scaling by reading out PWM_SCALE_SUM. As this parameter reflects the actual voltage required to drive the target current into the motor, it depends on several factors: motor load, coil resistance, supply voltage, and current setting. Therefore, an evaluation of the PWM_SCALE_SUM value allows checking the motor operation point. When reaching the limit (255), the current regulator cannot sustain the full motor current, e.g. due to a drop in supply volage.

7.7 Freewheeling and Passive Braking

StealthChop provides different options for motor standstitl. These options can be enabled by setting the standstill current IHOLD to zero and choosing the desired option using the FREEWHEEL setting. The desired option becomes enabled after a time period specified by TPOWERDOWN and IHOLDDELAY. Current regulation becomes frozen once the motor target current is at zero current in order to ensure a quick startup. With the freewheeling options, both freewheeling and passive braking can be realized. Passive braking is an effective eddy current motor braking, which consumes a minimum of energy, because no active current is driven into the coils. However, passive braking will allow slow turning of the motor when a continuous torque is applied.

Hint

Operate the motor within your application when exploring StealthChop. Motor performance often is better with a mechanical load, because it prevents the motor from stalling due mechanical oscillations which can occur without load.

Parameters Related to StealthChop			
Parameter	Description	Setting	Comment
$\begin{aligned} & \hline \text { en_spread_ } \\ & \text { cycle } \end{aligned}$	General disable for use of StealthChop (register GCONF).		Do not use StealthChop StealthChop enabled
TPWMTHRS	Specifies the upper velocity for operation in StealthChop. Entry the TSTEP reading (time between two microsteps) when operating at the desired threshold velocity.	$\begin{aligned} & \hline 0 \text {... } \\ & 1048575 \end{aligned}$	StealthChop is disabled if TSTEP falls TPWMTHRS
PWM_LIM	Limiting value for limiting the current jerk when switching from SpreadCycle to StealthChop. Reduce the value to yield a lower current jerk.	$0 . .15$	Upper four bits of 8 bit amplitude limit (Default=12)
pwm_ autoscale	Enable automatic current scaling using current measurement. If off, use forward controlled velocity-based mode.	$\begin{array}{\|l\|} 0 \\ 1 \end{array}$	Forward controlled mode Automatic scaling with current regulator
	Enable automatic tuning of PWM_GRAD_AUTO	0	disable, use PWM_GRAD from register instead enable
PWM_FREQ	PWM frequency selection. Use the lowest setting giving good results. The frequency measured at each of the chopper outputs is half of the effective chopper frequency fpwm.	$\begin{array}{\|l\|} \hline 0 \\ \hline 1 \\ 2 \\ \hline 3 \\ \hline \end{array}$	$\mathrm{f}_{\text {PWM }}=2 / 1024 \mathrm{f}_{\text {CLK }}$ $\mathrm{f}_{\text {PwM }}=2 / 683 \mathrm{f}_{\text {CLK }}$ $\mathrm{f}_{\text {PwM }}=2 / 512 \mathrm{f}_{\text {cLK }}$ $f_{\text {PWM }}=2 / 410 f_{\text {CLK }}$
PWM_REG	User defined PWM amplitude regulation loop Pcoefficient. A higher value leads to a higher adaptation speed when pwm_autoscale $=1$.	1... 15	Results in 0.5 to 7.5 steps for PWM_SCALE_AUTO regulator per fullstep
PWM_OFS	User defined PWM amplitude (offset) for velocity based scaling and initialization value for automatic tuning of PWM_OFFS_AUTO.	$0 . .255$	PWM_OFS=0 disables linear current scaling based on current setting
PWM_GRAD	User defined PWM amplitude (gradient) for velocity based scaling and initialization value for automatic tuning of PWM_GRAD_AUTO.	0 ... 255	
FREEWHEEL	Stand still option when motor current setting is zero (I_HOLD=0). Only available with StealthChop enabled. The freewheeling option makes the motor easy movable, while both coil short options realize a passive brake.		Normal operation Freewheeling Coil short via LS drivers Coil short cia HS drivers
$\begin{aligned} & \text { PWM_SCALE } \\ & \text {-AUTO } \end{aligned}$	Read back of the actual StealthChop voltage PWM scaling correction as determined by the current regulator. Shall regulate close to 0 during tuning.	$\begin{aligned} & -255 \ldots \\ & 255 \end{aligned}$	(read only) Scaling value becomes frozen when operating in SpreadCycle
PWM_GRAD AUTO PWM_OFS AUTO	Allow monitoring of the automatic tuning and determination of initial values for PWM_OFS and PWM_GRAD.	$0 . .255$ C	(read only)
TOFF	General enable for the motor driver, the actual value does not influence StealthChop	$\begin{array}{\|l\|} \hline 0 \\ \hline 1 . . .15 \\ \hline \end{array}$	Driver off Driver enabled
TBL	Comparator blank time. This time needs to safely cover the switching event and the duration of the ringing on the sense resistor. Choose a setting of 1 or 2 for typical applications. For higher capacitive loads, 3 may be required. Lower settings allow StealthChop to regulate down to lower coil current values.	$\begin{array}{\|l\|} \hline 0 \\ \hline 1 \\ \hline 2 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 16 \mathrm{t}_{\mathrm{cLK}} \\ 24 \mathrm{t}_{\mathrm{LK}} \\ \hline 36 \mathrm{t} \text { L } \\ 54 \mathrm{t}_{\mathrm{cLK}} \end{array}$

www.trinamic.com

8 SpreadCycle and Classic Chopper

While StealthChop is a voltage mode PWM controlled chopper, SpreadCycle is a cycle-by-cycle current control. Therefore, it can react extremely fast to changes in motor velocity or motor load. The currents through both motor coils are controlled using choppers. The choppers work independently of each other. In Figure 8.1 the different chopper phases are shown.

Figure 8.1 Chopper phases
Although the current could be regulated using only on phases and fast decay phases, insertion of the slow decay phase is important to reduce electrical losses and current ripple in the motor. The duration of the slow decay phase is specified in a control parameter and sets an upper limit on the chopper frequency. The current comparator can measure coil current during phases when the current flows through the sense resistor, but not during the slow decay phase, so the slow decay phase is terminated by a timer. The on phase is terminated by the comparator when the current through the coil reaches the target current. The fast decay phase may be terminated by either the comparator or another timer.
When the coil current is switched, spikes at the sense resistors occur due to charging and discharging parasitic capacitances. During this time, typically one or two microseconds, the current cannot be measured. Blanking is the time when the input to the comparator is masked to block these spikes.
There are two cycle-by-cycle chopper modes available: a new high-performance chopper algorithm called SpreadCycle and a proven constant off-time chopper mode. The constant off-time mode cycles through three phases: on, fast decay, and slow decay. The SpreadCycle mode cycles through four phases: on, slow decay, fast decay, and a second slow decay.
The chopper frequency is an important parameter for a chopped motor driver. A too low frequency might generate audible noise. A higher frequency reduces current ripple in the motor, but with a too high frequency magnetic losses may rise. Also power dissipation in the driver rises with increasing frequency due to the increased influence of switching slopes causing dynamic dissipation. Therefore, a compromise needs to be found. Most motors are optimally working in a frequency range of 16 kHz to 30 kHz . The chopper frequency is influenced by a number of parameter settings as well as by the motor inductivity and supply voltage.

Hint

A chopper frequency in the range of 16 kHz to 30 kHz gives a good result for most motors when using SpreadCycle. A higher frequency leads to increased switching losses.

Three parameters are used for controlling both chopper modes:

Parameter	Description	Setting	Comment
TOFF	Sets the slow decay time (off time). This setting also limits the maximum chopper frequency.	0	chopper off
	For operation with StealthChop, this parameter is not used, but it is required to enable the motor. In case of operation with StealthChop only, any setting is OK.	1... 15	off time setting $\mathrm{N}_{\text {cLk }}=24+32 *$ TOFF (1 will work with minimum blank time of 24 clocks)
	Setting this parameter to zero completely disables all driver transistors and the motor can free-wheel.		
TBL	Selects the comparator blank time. This time needs to safely cover the switching event and the duration of the ringing on the sense resistor. For most applications, a setting of 1 or 2 is good. For highly capacitive loads, e.g. when filter networks are used, a setting of 2 or 3 will be required.	0	$16 \mathrm{t}_{\text {cık }}$
		1	24 tclk
		2	36 t
		3	
chm	Selection of the chopper mode	0	SpreadCycle
		1	classic const. off time
TPFD	Adds passive fast decay time after bridge polarity change. Starting from 0 , increase value, in case the motor suffers from mid-range resonances.	0... 15	Fast decay time in multiple of 128 clocks (128 clocks are roughly $10 \mu \mathrm{~s}$)

8.1 SpreadCycle Chopper

The SpreadCycle (patented) chopper algorithm is a precise and simple to use chopper mode which automatically determines the optimum length for the fast-decay phase. The SpreadCycle will provide superior microstepping quality even with default settings. Several parameters are available to optimize the chopper to the application.

Each chopper cycle is comprised of an on phase, a slow decay phase, a fast decay phase and a second slow decay phase (see Figure 8.3). The two slow decay phases and the two blank times per chopper cycle put an upper limit to the chopper frequency. The slow decay phases typically make up for about $30 \%-70 \%$ of the chopper cycle in standstill and are important for low motor and driver power dissipation.

Calculation of a starting value for the slow decay time TOFF:

The hysteresis start setting forces the driver to introduce a minimum amount of current ripple into the motor coils. The current ripple must be higher than the current ripple which is caused by resistive losses in the motor in order to give best microstepping results. This will allow the chopper to precisely regulate the current both for rising and for falling target current. The time required to introduce the current ripple into the motor coil also reduces the chopper frequency. Therefore, a higher hysteresis setting will lead to a lower chopper frequency. The motor inductance limits the
ability of the chopper to follow a changing motor current. Further the duration of the on phase and the fast decay must be longer than the blanking time, because the current comparator is disabled during blanking.

It is easiest to find the best setting by starting from a low hysteresis setting (e.g. HSTRT=0, HEND=0) and increasing HSTRT, until the motor runs smoothly at low velocity settings. This can best be checked when measuring the motor current either with a current probe or by probing the sense resistor voltages (see Figure 8.2). Checking the sine wave shape near zero transition will show a small ledge between both half waves in case the hysteresis setting is too small. At medium velocities (i.e. 100 to 400 fullsteps per second), a too low hysteresis setting will lead to increased humming and vibration of the motor.

Figure 8.2 No ledges in current wave with sufficient hysteresis (magenta: current A, yellow \& blue: sense resistor voltages A and B)
A too high hysteresis setting will lead to reduced chopper frequency and increased chopper noise but will not yield any benefit for the wave shape.

Quick Start

For a quick start, see the Quick Configuration Guide in chapter 22.
For detail procedure see Application Note AN001 - Parameterization of SpreadCycle
As experiments show, the setting is quite independent of the motor, because higher current motors typically also have a lower coil resistance. Therefore choosing a low to medium default value for the hysteresis (for example, effective hysteresis $=4$) normally fits most applications. The setting can be optimized by experimenting with the motor: A too low setting will result in reduced microstep accuracy, while a too high setting will lead to more chopper noise and motor power dissipation. When measuring the sense resistor voltage in motor standstill at a medium coil current with an oscilloscope, a too low setting shows a fast decay phase not longer than the blanking time. When the fast decay time becomes slightly longer than the blanking time, the setting is optimum. You can reduce the off-time setting, if this is hard to reach.

The hysteresis principle could in some cases lead to the chopper frequency becoming too low, e.g. when the coil resistance is high when compared to the supply voltage. This is avoided by splitting the hysteresis setting into a start setting (HSTRT+HEND) and an end setting (HEND). An automatic hysteresis decrementer (HDEC) interpolates between both settings, by decrementing the hysteresis value stepwise each 16 system clocks. At the beginning of each chopper cycle, the hysteresis begins with a value which is the sum of the start and the end values (HSTRT+HEND), and decrements during the cycle, until either the chopper cycle ends or the hysteresis end value (HEND) is reached. This way,
the chopper frequency is stabilized at high amplitudes and low supply voltage situations, if the frequency gets too low. This avoids the frequency reaching the audible range.

Figure 8.3 SpreadCycle chopper scheme showing coil current during a chopper cycle
Two parameters control SpreadCycle mode:

Parameter	Description	Setting	Comment
HSTRT	Hysteresis start setting. This value is an offset from the hysteresis end value HEND.	$0 \ldots 7$	HSTRT=1...8 This value adds to HEND.
HEND	Hysteresis end setting. Sets the hysteresis end value after a number of decrements. The sum HSTRT+HEND must be $\leq 16 . ~ A t ~ a ~ c u r r e n t ~ s e t t i n g ~ o f ~$	3	$-3 \ldots-1:$ negative HEND
max. 30 (amplitude reduced to 240), the sum is			
not limited.			

With HSTRT $=0$ and $\mathrm{HEND}=0$, the hysteresis is 0 (off).

Example:

A hysteresis of 4 has been chosen. You might decide to not use hysteresis decrement. In this case set:
HEND=6
(sets an effective end value of 6-3=3)
HSTRT=0
(sets minimum hysteresis, i.e. 1: $3+1=4$)

In order to take advantage of the variable hysteresis, we can set most of the value to the HSTRT, i.e. 4 , and the remaining 1 to hysteresis end. The resulting configuration register values are as follows:

HSTRT $=6$
(sets an effective end value of -3)
(sets an effective start value of hysteresis end +7:7-3=4)

Hint

Highest motor velocities sometimes benefit from setting TOFF to 2 or 3 and a short TBL of 2 or 1.

8.2 Classic Constant Off Time Chopper

The classic constant off time chopper is an alternative to SpreadCycle. Perfectly tuned, it also gives good results. Also, the classic constant off time chopper (automatically) is used in combination with fullstepping in DcStep operation.

The classic constant off-time chopper uses a fixed-time fast decay following each on phase. While the duration of the on phase is determined by the chopper comparator, the fast decay time needs to be long enough for the driver to follow the falling slope of the sine wave, but it should not be so long that it causes excess motor current ripple and power dissipation. This can be tuned using an oscilloscope or evaluating motor smoothness at different velocities. A good starting value is a fast decay time setting similar to the slow decay time setting.

Figure 8.4 Classic const. off time chopper with offset showing coil current

After tuning the fast decay time, the offset should be tuned for a smooth zero crossing. This is necessary because the fast decay phase makes the absolute value of the motor current lower than the target current (see Figure 8.5). If the zero offset is too low, the motor stands still for a short moment during current zero crossing. If it is set too high, it makes a larger microstep. Typically, a positive offset setting is required for smoothest operation.

Figure 8.5 Zero crossing with classic chopper and correction using sine wave offset
Three parameters control constant off-time mode:

Parameter	Description	Setting	Comment
TFD (fd3 HSTRT)	Fast decay time setting. With CHM=1, these bits control the portion of fast decay for each chopper cycle.	0	slow decay only
OFFSET (HEND)	Sine wave offset. With CHM=1, these bits control the sine wave offset. A positive offset corrects for zero crossing error.	$0 . . .2$	duration of fast decay phase
disfdcc	Selects usage of the current comparator for termination of the fast decay cycle. If current comparator is enabled, it terminates the fast decay cycle in case the current reaches a higher negative value than the actual positive value.	$\mathbf{0}$	no offset: 0 0

9 Selecting Sense Resistors

The TMC5160 provides several means to set the motor current: Sense resistors, GLOBALSCALER and currentscale CS. To adapt a drive to the motor, choose a sense-resistor value fitting or slightly exceeding the maximum desired current at 100% settings of the scalers. Fine-tune the current to the specific motor via the 8 bit GLOBALSCALER. Situation specific motor current adaptation is done by 5 bit scalers (actual scale can be read via CS), controlled by CoolStep, run- and hold current (IRUN, IHOLD). This makes the CS control compatible to other TRINAMIC ICs.

Set the desired maximum motor current by selecting an appropriate value for the sense resistor. The following table shows the RMS current values which are reached using standard resistors.

Sense resistors should be carefully selected. The full motor current flows through the sense resistors. Due to chopper operation the sense resistors see pulsed current from the MOSFET bridges. Therefore, a low-inductance type such as film or composition resistors is required to prevent voltage spikes causing ringing on the sense voltage inputs leading to unstable measurement results. Also, a lowinductance, low-resistance PCB layout is essential. A massive ground plane is best. Please also refer to layout considerations in chapter 29.

The sense resistor sets the upper current which can be set by software settings IRUN, IHOLD and GLOBALSCALER. Choose the sense resistor value so that the maximum desired current (or slightly more) flows at the maximum current setting ($G L O B A L S C A L E R=0$ and $I R U N=31$).

GLOBALSCALER is the global current scaler. A setting of 0 is treated as full scale (256).
CS is the current scale setting as set by the IHOLD and IRUN and CoolStep.
$V_{F S}$ is the full scale voltage (please refer to electrical characteristics, $\mathrm{V}_{\text {SRT }}$).
$C U R_{A / B}$ is the actual value from the internal sine wave table.
248 is the amplitude of the internal sine wave table.

The sense resistor needs to be able to conduct the peak motor coil current in motor standstill conditions, unless standby power is reduced. Under normal conditions, the sense resistor conducts
less than the coil RMS current, because no current flows through the sense resistor during the slow decay phases.

Calculation of peak sense resistor power dissipation

$$
P_{\text {RSMAX }}=I_{\text {COIL }}{ }^{2} * R_{\text {SENSE }}
$$

Hint

For best precision of current setting, it is advised to measure and fine tune the current in the application. Choose the sense resistors to the next value covering the desired motor current. Set IRUN to 31 corresponding 100% of the desired motor current and fine-tune motor current using GLOBALSCALER.

Attention

Be sure to use a symmetrical sense resistor layout and short and straight sense resistor traces of identical length. Well matching sense resistors ensure best performance.
A compact layout with massive ground plane is best to avoid parasitic resistance effects.

Parameter	Description	Setting	Comment
IRUN	Current scale when motor is running. Scales coil current values as taken from the internal sine wave table. For high precision motor operation, work with a current scaling factor in the range 16 to 31 , because scaling down the current values reduces the effective microstep resolution by making microsteps coarser. This setting also controls the maximum current value set by CoolStep.	0 ... 31	scaling factor 1/32, 2/32, ... 32/32
IHOLD	Identical to IRUN, but for motor in stand still.		
$\begin{aligned} & \text { IHOLD } \\ & \text { DELAY } \end{aligned}$	Allows smooth current reduction from run current to hold current. IHOLDDELAY controls the number of clock cycles for motor power down after TZEROWAIT in increments of $2^{\wedge} 18$ clocks: $0=$ instant power down, 1..15: Current reduction delay per current step in multiple of $2^{\wedge} 18$ clocks.	$\begin{array}{ll} \hline 0 \\ 1 . . . & \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { instant IHOLD } \\ 1^{*} 2^{18} . . .15^{*} 2^{18} \\ \hline \end{array}$ clocks per current decrement
	Example: When using $I R U N=31$ and $I H O L D=16,15$ current steps are required for hold current reduction. A IHOLDDELAY setting of 4 thus results in a power down time of $4^{*} 15^{*} 2^{\wedge} 18$ clock cycles, i.e. roughly one second at 16 MHz .		
$\begin{aligned} & \text { GLOBAL } \\ & \text { SCALER } \end{aligned}$	Allows fine control of the motor current range setting	$0 . . .255$	scales in 1/256 steps $0=$ full scale

www.trinamic.com

published by WWW.SKYTECH.IR

10 Velocity Based Mode Control

The TMC5160 allows the configuration of different chopper modes and modes of operation for optimum motor control. Depending on the motor load, the different modes can be optimized for lowest noise \& high precision, highest dynamics, or maximum torque at highest velocity. Some of the features like CoolStep or StallGuard2 are useful in a limited velocity range. A number of velocity thresholds allow combining the different modes of operation within an application requiring a wide velocity range.

Figure 10.1 Choice of velocity dependent modes
Figure 10.1 shows all available thresholds and the required ordering. VPWMTHRS, VHIGH and VCOOLTHRS are determined by the settings TPWMTHRS, THIGH and TCOOLTHRS. The velocity is described by the time interval TSTEP between each two step pulses. This allows determination of the velocity when an external step source is used. TSTEP always becomes normalized to 256 microstepping. This way, the thresholds do not have to be adapted when the microstep resolution is changed. The thresholds represent the same motor velocity, independent of the microstep settings. TSTEP becomes compared to these threshold values. A hysteresis of $1 / 16$ TSTEP resp. $1 / 32$ TSTEP is applied to avoid continuous toggling of the comparison results when a jitter in the TSTEP measurement occurs. The upper switching velocity is higher by $1 / 16$, resp. $1 / 32$ of the value set as threshold. The StealthChop threshold TPWMTHRS is not shown. It can be included with VPWMTHRS < VCOOLTHRS. The motor current can be programmed to a run and a hold level, dependent on the standstill flag stst.

Using automatic velocity thresholds allows tuning the application for different velocity ranges. Features like CoolStep will integrate completely transparently in your setup. This way, once parameterized, they do not require any activation or deactivation via software.

Parameter	Description	Setting	Comment
stst	This flag indicates motor stand still in each operation mode. This occurs $2^{\wedge} 20$ clocks after the last step pulse.	0/1	Status bit, read only
$\begin{aligned} & \text { TPOWER } \\ & \text { DOWN } \end{aligned}$	This is the delay time after stand still (stst) of the motor to motor current power down. Time range is about 0 to 4 seconds.	0... 255	Time in multiples of 2^18 $t_{\text {CLK }}$
TSTEP	Actual measured time between two 1/256 microsteps derived from the step input frequency in units of $1 / f C L K$. Measured value is (2^20)-1 in case of overflow or stand still.	$\begin{aligned} & 0 . . . \\ & 1048575 \end{aligned}$	Status register, read only. Actual measured step time in multiple of $t_{\text {CLK }}$
TPWMTHRS	TSTEP \geq TPWMTHRS - StealthChop PWM mode is enabled, if configured DcStep is disabled	$\begin{aligned} & 0 . . . \\ & 1048575 \end{aligned}$	Setting to control the upper velocity threshold for operation in StealthChop
TCOO	TCOOLTHRS \geq TSTEP \geq THIGH: - CoolStep is enabled, if configured - StealthChop voltage PWM mode is disabled TCOOLTHRS \geq TSTEP - Stop on stall and stall output signal is enabled, if configured	$\begin{aligned} & 0 . . . \\ & 1048575 \end{aligned}$	Setting to control the lower velocity threshold for operation with CoolStep and StallGuard
THIGH	TSTEP \leq THIGH: CoolStep is disabled (motor runs with normal current scale) StealthChop voltage PWM mode is disabled If vhighchm is set, the chopper switches to chm=1 with TFD=0 (constant off time with slow decay, only). If vhighfs is set, the motor operates in fullstep mode and the stall detection becomes switched over to DcStep stall detection.	$0 . .$ 1048575	Setting to control the upper threshold for operation with CoolStep and StallGuard as well as optional high velocity step mode
small_	Hysteresis for step frequency comparison based	0	Hysteresis is 1/16
hysteresis	on TSTEP (lower velocity threshold) and (TSTEP*15/16)-1 respectively (TSTEP*31/32)-1 (upper velocity threshold)	1	Hysteresis is 1/32
vhigh	This bit enables switching to fullstep, when VHIGH is exceeded. Switching takes place only at 45° position. The fullstep target current uses the current value from the microstep table at the 45° position.	0	No switch to fullstep Fullstep at high velocities
vhighchm	This bit enables switching to chm=1 and $f d=0$, when VHIGH is exceeded. This way, a higher velocity can be achieved. Can be combined with vhighfs=1. If set, the TOFF setting automatically becomes doubled during high velocity operation in order to avoid doubling of the chopper frequency.	0	No change of chopper mode
		1	Classic const. Toff chopper at high velocities
en_pwm_ mode	StealthChop voltage PWM enable flag (depending on velocity thresholds). Switch from off to on state while in stand still, only.	0	No StealthChop
		1	StealthChop below VPWMTHRS

11 Diagnostics and Protection

The TMC5160 supplies a complete set of diagnostic and protection capabilities, like short circuit protection and undervoltage detection. Open load detection allows testing if a motor coil connection is interrupted. See the DRV_STATUS table for details.

11.1 Temperature Sensors

The driver integrates a four level temperature sensor $\left(120^{\circ} \mathrm{C}\right.$ pre-warning and selectable $136^{\circ} \mathrm{C} / 143^{\circ} \mathrm{C} /$ $150^{\circ} \mathrm{C}$ thermal shutdown) for diagnostics and for protection of the IC and the power MOSFETs and adjacent components against excess heat. Choose the overtemperature level to safely cover error conditions like missing heat convection. Heat is mainly generated by the power MOSFETs, and, at increased voltage, by the internal voltage regulators. For many applications, already the overtemperature pre-warning will indicate an abnormal operation situation and can be used to initiate user warning or power reduction measures like motor current reduction. The thermal shutdown is just an emergency measure and temperature rising to the shutdown level should be prevented by design.

After triggering the overtemperature sensor (ot flag), the driver remains switched off until the system temperature falls below the pre-warning level (otpw) to avoid continuous heating to the shutdown level.

11.2 Short Protection

The TMC5160 protects the MOSFET power stages against a short circuit or overload condition by monitoring the voltage drop in the high-side MOSFETs, as well as the voltage drop in sense resistor and low-side MOSFETs (Figure 11.1). A programmable short detection delay (shortdelay) allows adjusting the detector to work with very slow switching slopes. Additionally, the short detector allows filtering of the signal. This helps to prevent spurious triggering caused by effects of PCB layout, or long, adjacent motor cables (SHORTFILTER). All control bits are available via register SHORT_CONF. Additionally, the short detection is protected against single events, e.g. caused by ESD discharges, by retrying three times before switching off the motor continuously.

Parameter	Description	Setting	Comment
S2VS_LEVEL	Short or overcurrent detector level for lowside FETs. Checks for voltage drop in LS MOSFET and sense resistor. Hint: 6 to 8 recommended, down to 4 at low current scale	4... 15	4 (highest sensitivity) ... 15 (lowest sensitivity) (Reset Default: OTP 6 or 12)
S2G_	S2G_LEVEL: Short to GND detector level for highside FETs. Checks for voltage drop on high side MOSFET. Hint: 6 to 14 recommended (minimum 12 if the bridge supply voltage can exceed 52 V)	$\text { 2... } 15$	2 (highest sensitivity) ... 15 (lowest sensitivity) (Reset Default: OTP 6 or 12)
SHORT FILTER	Spike filtering bandwidth for short detection Hint: A good PCB layout will allow using setting 0 . Increase value, if erroneous short detection occurs.	0... 3	$\begin{aligned} & 0 \text { (lowest, 100ns), } \\ & 1 \text { (1 } 1 \mu \mathrm{~s}) \text { (Reset Default), } \\ & 2(2 \mu \mathrm{~s}), \\ & 3(3 \mu \mathrm{~s}) \end{aligned}$
shortdelay	shortdelay: Short detection delay The short detection delay shall cover the bridge switching time. 0 will work for most applications.	0/1	0=750ns: normal, 1=1500ns: high
CHOPCONF. diss2vs	Allows to disable short to VS protection.	0/1	Leave detection enabled for normal use (0).
CHOPCONF. diss2g	Allows to disable short to GND protection.	0/1	Leave detection enabled for normal use (0).

As the low-side short detection includes the sense resistor, it can be set to a high sensitivity and provides good precision of current detection. This way, it will safely cover most overcurrent conditions, i.e. when the motor stalls, or is abruptly stopped in StealthChop mode.

Hint

Once a short condition is safely detected, the corresponding driver bridge (A or B) becomes switched off, and the s2ga or s2gb flag, respectively s2vsa or s2vsb becomes set.
To restart the motor, disable and re-enable the driver.

Attention

Short protection cannot protect the system and the power stages for all possible short events, as a short event is rather undefined and a complex network of external components may be involved. Therefore, short circuits should basically be avoided.

Hint

Set low-side short protection (S2VS) to sensitively detect an overcurrent condition (at 150 to 200% of nominal peak current). Especially with low resistive motors an overcurrent can easily be triggered by false settings, or motor stall when using StealthChop. Therefore, a sensitive short to VS setting will protect the power stage.

Attention

High-side short detection (S2G) sensitivity may increase at voltages of 52V and above. Therefore, a higher setting is required if motor supply voltage can overshoot up to 55 V . We recommend a setting of 12 to 15 in this case. For fine tuning of overcurrent detection, trim the S2VS detector threshold. High-side short detection may falsely trigger if motor supply voltage overshoots 55V.

11.3 Open Load Diagnostics

Interrupted cables are a common cause for systems failing, e.g. when connectors are not firmly plugged. The TMC5160 detects open load conditions by checking, if it can reach the desired motor coil current. This way, also undervoltage conditions, high motor velocity settings or short and overtemperature conditions may cause triggering of the open load flag, and inform the user, that motor torque may suffer. In motor stand still, open load cannot be measured, as the coils might eventually have zero current.

Open load detection is provided for system debugging.
In order to safely detect an interrupted coil connection, read out the open load flags at low or nominal motor velocity operation, only. If possible, use SpreadCycle for testing, as it provides the most accurate test. However, the ola and olb flags have just informative character and do not cause any action of the driver.

12 Ramp Generator

The ramp generator allows motion based on target position or target velocity. It automatically calculates the optimum motion profile taking into account acceleration and velocity settings. The TMC5160 integrates a new type of ramp generator, which offers faster machine operation compared to the classical linear acceleration ramps. The sixPoint ramp generator allows adapting the acceleration ramps to the torque curves of a stepper motor and uses two different acceleration settings each for the acceleration phase and for the deceleration phase. See Figure 12.2.

12.1 Real World Unit Conversion

The TMC5160 uses its internal or external clock signal as a time reference for all internal operations. Thus, all time, velocity and acceleration settings are referenced to fcLk. For best stability and reproducibility, it is recommended to use an external quartz oscillator as a time base, or to provide a clock signal from a microcontroller.

The units of a TMC5160 register content are written as register[5160].

Parameter vs. Units		
Parameter / Symbol	Unit	calculation / description / comment
$\mathrm{f}_{\text {cLL }}[\mathrm{Hz}]$	[Hz]	clock frequency of the TMC5160 in [Hz]
5	[s]	second
US	μ step	
FS	fullstep	
μ step velocity $\mathrm{v}[\mathrm{Hz}]$	μ steps / s	$\mathrm{v}[\mathrm{Hz}]=\mathrm{v}[5160]^{*}\left(\mathrm{f}_{\text {CLK }}[\mathrm{Hz}] / 2 / 2\right.$ 2^23 $^{\text {a }}$
μ step acceleration a[Hz/s]	μ steps / s^2	$\mathrm{a}[\mathrm{Hz/s}]=\mathrm{a}[5160]^{*} \mathrm{f}_{\text {cLK }}[\mathrm{Hz}]^{\wedge} 2 /\left(512^{* 256)} /\right.$ 2^24 $^{\text {a }}$
USC microstep count	counts	microstep resolution in number of microsteps (i.e. the number of microsteps between two fullsteps - normally 256)
rotations per second v [rps]	rotations/s	$\mathrm{v}[\mathrm{rps}]=\mathrm{v}[\mu \mathrm{steps} / \mathrm{s}] /$ USC / FSC FSC: motor fullsteps per rotation, e.g. 200
rps acceleration a [rps/s^2]	rotations / s^2	a [rps/s^2] = a[$\left.\mu \mathrm{steps} / \mathrm{s}^{\wedge} 2\right] / \mathrm{USC} / \mathrm{FSC}$
ramp steps[$\mu \mathrm{steps}$] $=\mathrm{rs}$	μ steps	$\mathrm{rs}=(\mathrm{v}[5160])^{\wedge} 2 / \mathrm{a}[5160] / 2^{\wedge} 8$ microsteps during linear acceleration ramp (assuming acceleration from 0 to v)
TSTEP, T...THRS		TSTEP $=\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {STEP }}$ The time reference for velocity thresholds is referred to the actual microstep frequency of the clock input respectively velocity $\mathrm{v}[\mathrm{Hz}]$.

In rare cases, the upper acceleration limit might impose a limitation to the application, e.g. when working with a reduced clock frequency or high gearing and low load on the motor. In order to increase the effective acceleration possible, the microstep resolution of the sequencer input may be decreased. Setting the CHOPCONF options intpol=1 and MRES=\%0001 will double the motor velocity for the same speed setting and thus also double effective acceleration and deceleration. The motor will have the same smoothness, but half position resolution with this setting.

[^1]
12.2 Motion Profiles

For the ramp generator register set, please refer to the chapter 6.3.

12.2.1 Ramp Mode

The ramp generator delivers two phase acceleration and two phase deceleration ramps with additional programmable start and stop velocities (see Figure 12.1).

```
Note
The start velocity can be set to zero, if not used.
The stop velocity can be set to ten (or down to one), if not used.
Take care to set VSTOP identical to or above VSTART. This ensures that even a short motion can
be terminated successfully at the target position.
```

The two different sets of acceleration and deceleration can be combined freely. A common transition speed V1 allows for velocity dependent switching between both acceleration and deceleration settings. A typical use case will use lower acceleration and deceleration values at higher velocities, as the motors torque declines at higher velocity. When considering friction in the system, it becomes clear, that typically deceleration of the system is quicker than acceleration. Thus, deceleration values can be higher in many applications. This way, operation speed of the motor in time critical applications can be maximized.
As target positions and ramp parameters may be changed any time during the motion, the motion controller will always use the optimum (fastest) way to reach the target, while sticking to the constraints set by the user. This way it might happen, that the motion becomes automatically stopped, crosses zero and drives back again. This case is flagged by the special flag second_move.

12.2.2 Start and Stop Velocity

When using increased levels of start- and stop velocity, it becomes clear, that a subsequent move into the opposite direction would provide a jerk identical to VSTART+VSTOP, rather than only VSTART. As the motor probably is not able to follow this, you can set a time delay for a subsequent move by setting TZEROWAIT. An active delay time is flagged by the flag t_zerowait_active. Once the target position is reached, the flag position_reached becomes active.

Figure 12.1 Ramp generator velocity trace showing consequent move in negative direction

Figure 12.2 Illustration of optimized motor torque usage with TMC5160 ramp generator

12.2.3 Velocity Mode

For the ease of use, velocity mode movements do not use the different acceleration and deceleration settings. You need to set VMAX and $A M A X$ only for velocity mode. The ramp generator always uses $A M A X$ to accelerate or decelerate to VMAX in this mode.
In order to decelerate the motor to stand still, it is sufficient to set VMAX to zero. The flag vzero signals standstill of the motor. The flag velocity_reached always signals, that the target velocity has been reached.

12.2.4 Early Ramp Termination

In cases where users can interact with a system, some applications require terminating a motion by ramping down to zero velocity before the target position has been reached.

Options to Terminate Motion using Acceleration Settings:

a) Switch to velocity mode, set $V M A X=0$ and $A M A X$ to the desired deceleration value. This will stop the motor using a linear ramp.
b) For a stop in positioning mode, set VSTART=0 and VMAX=0. VSTOP is not used in this case. The driver will use $A M A X$ and $A 1$ (as determined by $V 1$) for going to zero velocity.
c) For a stop using D1, DMAX and VSTOP, trigger the deceleration phase by copying XACTUAL to XTARGET. Set TZEROWAIT sufficiently to allow the CPU to interact during this time. The driver will decelerate and eventually come to a stop. Poll the actual velocity to terminate motion during TZEROWAIT time using option a) or b).
d) Activate a stop switch. This can be done by means of the hardware input, e.g. using a wired 'OR' to the stop switch input. If you do not use the hardware input and have tied the REFL and REFR to a fixed level, enable the stop function (stop_l_enable, stop_r_enable) and use the inverting function (pol_stop_l, pol_stop_r) to simulate the switch activation.

12.2.5 Application Example: Joystick Control

Applications like surveillance cameras can be optimally enhanced using the motion controller: while joystick commands operate the motor at a user defined velocity, the target ramp generator ensures that the valid motion range never is left.

Realize Joystick Control

1. Use positioning mode in order to control the motion direction and to set the motion limit(s).
2. Modify VMAX at any time in the range VSTART to your maximum value. With VSTART=0, you can also stop motion by setting $V M A X=0$. The motion controller will use $A 1$ and $A M A X$ as determined by V1 to adapt velocity for ramping up and ramping down.
3. In case you do not modify the acceleration settings, you do not need to rewrite XTARGET, just modify VMAX.
4. DMAX, D1 and VSTOP only become used when the ramp controller slows down due to reaching the target position, or when the target position has been modified to point to the other direction.

12.3 Velocity Thresholds

The ramp generator provides a number of velocity thresholds coupled with the actual velocity VACTUAL. The different ranges allow programming the motor to the optimum step mode, coil current and acceleration settings. Most applications will not require all of the thresholds, but in principle all modes can be combined as shown in Figure 12.1. VHIGH and VCOOLTHRS are determined by the settings THIGH and TCOOLTHRS in order to allow determination of the velocity when an external step source is used. TSTEP becomes compared to these threshold values. A hysteresis of $1 / 16$ TSTEP resp. $1 / 32$ TSTEP is applied to avoid continuous toggling of the comparison results when a jitter in the TSTEP measurement occurs. The upper switching velocity is higher by $1 / 16$, resp. $1 / 32$ of the value set as threshold. The StealthChop threshold TPWMTHRS is not shown. It can be included with VPWMTHRS < VCOOLTHRS.

Figure 12.3 Ramp generator velocity dependent motor control
The velocity thresholds for the different chopper modes and sensorless operation features are coupled to the time between each two microsteps TSTEP.

12.4 Reference Switches

Prior to normal operation of the drive an absolute reference position must be set. The reference position can be found using a mechanical stop which can be detected by stall detection, or by a reference switch.
In case of a linear drive, the mechanical motion range must not be left. This can be ensured also for abnormal situations by enabling the stop switch functions for the left and the right reference switch. Therefore, the ramp generator responds to a number of stop events as configured in the SW_MODE register. There are two ways to stop the motor:

- It can be stopped abruptly, when a switch is hit. This is useful in an emergency case and for StallGuard based homing.
- Or the motor can be softly decelerated to zero using deceleration settings (DMAX, V1, D1).

```
Hint
Latching of the ramp position XACTUAL to the holding register XLATCH upon a switch event gives a precise snapshot of the position of the reference switch.
```


Normally open or normally closed switches can be used by programming the switch polarity or selecting the pullup or pull-down resistor configuration. A normally closed switch is failsafe with respect to an interrupt of the switch connection. Switches which can be used are:

- mechanical switches,
photo interrupters, or
hall sensors.

Be careful to select reference switch resistors matching your switch requirements!
In case of long cables additional RC filtering might be required near the TMC5160 reference inputs. Adding an RC filter will also reduce the danger of destroying the logic level inputs by wiring faults, but it will add a certain delay which should be considered with respect to the application.

Implementing a Homing Procedure

1. Make sure, that the home switch is not pressed, e.g. by moving away from the switch.
2. Activate position latching upon the desired switch event and activate motor (soft) stop upon active switch. StallGuard based homing requires using a hard stop (en_softstop=0).
3. Start a motion ramp into the direction of the switch. (Move to a more negative position for a left switch, to a more positive position for a right switch). You may timeout this motion by using a position ramping command.
4. As soon as the switch is hit, the position becomes latched and the motor is stopped. Wait until the motor is in standstill again by polling the actual velocity VACTUAL or checking vzero or the standstill flag.
5. Switch the ramp generator to hold mode and calculate the difference between the latched position and the actual position. For StallGuard based homing or when using hard stop, XACTUAL stops exactly at the home position, so there is no difference (0).
6. Write the calculated difference into the actual position register. Now, homing is finished. A move to position 0 will bring back the motor exactly to the switching point. In case StallGuard was used for homing, read and write back RAMP_STAT to clear the StallGuard stop event event_stop_sg and release the motor from the stop condition.

Homing with a Third Switch

Some applications use an additional home switch, which operates independently of the mechanical limit switches. The encoder functionality of the TMC5160 provides an additional source for position latching. It allows using the N channel input to snapshot XACTUAL with a rising or falling edge event, or both. This function also provides an interrupt output.

1. Activate the latching function (ENCMODE: Set ignoreAB, clr_cont, neg_edge or pos_edge and latch_x_act). The latching function can then trigger the interrupt output (check by reading n_event in ENC_STATUS when interrupt is signaled at DIAGO).
2. Move to the direction, where the N channel switch should be. In case the motor hits a stop switch (REFL or REFR) before the home switch is detected, reverse the motion direction.
3. Read out XLATCH once the switch has been triggered. It gives the position of the switch event.
4. After detection of the switch event, stop the motor, and subtract XLATCH from the actual position. Read and write back ENC_STAT to clear the status flags. (A detailed description of the required steps is in the homing procedure above.)

13 StallGuard2 Load Measurement

StallGuard2 provides an accurate measurement of the load on the motor. It can be used for stall detection as well as other uses at loads below those which stall the motor, such as CoolStep loadadaptive current reduction. The StallGuard2 measurement value changes linearly over a wide range of load, velocity, and current settings, as shown in Figure 13.1. At maximum motor load, the value goes to zero or near to zero. This corresponds to a load angle of 90° between the magnetic field of the coils and magnets in the rotor. This also is the most energy-efficient point of operation for the motor.

Parameter	Description	Setting	Comment
SGT	This signed value controls the StallGuard2 threshold level for stall detection and sets the optimum measurement range for readout. A lower value gives a higher sensitivity. Zero is the starting value working with most motors. A higher value makes StallGuard2 less sensitive and requires more torque to indicate a stall.	0 $+1 . . .+63$ -1... -64	indifferent value less sensitivity higher sensitivity
sfilt	Enables the StallGuard2 filter for more precision of the measurement. If set, reduces the measurement frequency to one measurement per electrical period of the motor (4 fullsteps).	0	standard mode filtered mode
Status word	Description	Range	Comment
SG_RESULT	This is the StallGuard2 result. A higher reading indicates less mechanical load. A lower reading indicates a higher load and thus a higher load angle. Tune the SGT setting to show a SG_RESULT reading of roughly 0 to 100 at maximum load before motor stall.	$0 . . .1023$	0: highest load low value: high load high value: less load

Hint

In order to use StallGuard2 and CoolStep, the StallGuard2 sensitivity should first be tuned using the SGT setting!

13.1 Tuning StallGuard2 Threshold SGT

The StallGuard2 value SG_RESULT is affected by motor-specific characteristics and application-specific demands on load and velocity. Therefore the easiest way to tune the StallGuard2 threshold SGT for a specific motor type and operating conditions is interactive tuning in the actual application.

Initial procedure for tuning StallGuard SGT

1. Operate the motor at the normal operation velocity for your application and monitor SG_RESULT.
2. Apply slowly increasing mechanical load to the motor. If the motor stalls before SG_RESULT reaches zero, decrease SGT. If SG_RESULT reaches zero before the motor stalls, increase SGT. A good SGT starting value is zero. $S \bar{G} T$ is signed, so it can have negative or positive values.
3. Set TCOOLTHRS to a value above TSTEP and enable sg_stop to enable the stop on stall feature. Make sure, that the motor is safely stopped whenever it is stalled. Increase SGT if the motor becomes stopped before a stall occurs. Restart the motor by disabling sg_stop or by reading and writing back the RAMP_STAT register (write+clear function).
4. The optimum setting is reached when SG_RESULT is between 0 and roughly 100 at increasing load shortly before the motor stalls, and SG_RESULT increases by 100 or more without load. SGT in most cases can be tuned for a certain motion velocity or a velocity range. Make sure, that the setting works reliable in a certain range (e.g. 80% to 120% of desired velocity) and also under extreme motor conditions (lowest and highest applicable temperature).

OPTIONAL PROCEDURE ALLOWING AUTOMATIC TUNING OF SGT

The basic idea behind the SGT setting is a factor, which compensates the StallGuard measurement for resistive losses inside the motor. At standstill and very low velocities, resistive losses are the main factor for the balance of energy in the motor, because mechanical power is zero or near to zero. This way, SGT can be set to an optimum at near zero velocity. This algorithm is especially useful for tuning SGT within the application to give the best result independent of environment conditions, motor stray, etc.

1. Operate the motor at low velocity < 10 RPM (i.e. a few to a few fullsteps per second) and target operation current and supply voltage. In this velocity range, there is not much dependence of SG_RESULT on the motor load, because the motor does not generate significant back EMF. Therefore, mechanical load will not make a big difference on the result.
2. Switch on sfilt. Now increase SGT starting from 0 to a value, where SG_RESULT starts rising. With a high SGT, SG_RESULT will rise up to the maximum value. Reduce again to the highest value, where SG_RESULT stays at 0 . Now the SGT value is set as sensibly as possible. When you see SG_RESULT increasing at higher velocities, there will be useful stall detection.

The upper velocity for the stall detection with this setting is determined by the velocity, where the motor back EMF approaches the supply voltage and the motor current starts dropping when further increasing velocity.

SG_RESULT goes to zero when the motor stalls and the ramp generator can be programmed to stop the motor upon a stall event by enabling sg_stop in SW_MODE. Set TCOOLTHRS to match the lower velocity threshold where StallGuard delivers a good result in order to use sg_stop.

The power supply voltage also affects SG_RESULT, so tighter voltage regulation results in more accurate values. StallGuard measurement has a high resolution, and there are a few ways to enhance its accuracy, as described in the following sections.

Quick Start

For a quick start, see the Quick Configuration Guide in chapter 22.
For detail procedure see Application Note AN002 - Parameterization of StallGuard2 \& CoolStep

13.1.1 Variable Velocity Limits TCOOLTHRS and THIGH

The SGT setting chosen as a result of the previously described SGT tuning can be used for a certain velocity range. Outside this range, a stall may not be detected safely, and CoolStep might not give the optimum result.

Figure 13.2 Example: optimum SGT setting and StallGuard2 reading with an example motor
In many applications, operation at or near a single operation point is used most of the time and a single setting is sufficient. The driver provides a lower and an upper velocity threshold to match this. The stall detection is disabled outside the determined operation point, e.g. during acceleration phases preceding a sensorless homing procedure when setting TCOOLTHRS to a matching value. An upper limit can be specified by THIGH.

In some applications, a velocity dependent tuning of the SGT value can be expedient, using a small number of support points and linear interpolation.

13.1.2 Small Motors with High Torque Ripple and Resonance

Motors with a high detent torque show an increased variation of the StallGuard2 measurement value SG with varying motor currents, especially at low currents. For these motors, the current dependency should be checked for best result.

13.1.3 Temperature Dependence of Motor Coil Resistance

Motors working over a wide temperature range may require temperature correction, because motor coil resistance increases with rising temperature. This can be corrected as a linear reduction of SGT at increasing temperature, as motor efficiency is reduced.

13.1.4 Accuracy and Reproducibility of StallGuard2 Measurement

In a production environment, it may be desirable to use a fixed SGT value within an application for one motor type. Most of the unit-to-unit variation in StallGuard2 measurements results from manufacturing tolerances in motor construction. The measurement error of StallGuard2 - provided that all other parameters remain stable - can be as low as:

$$
\text { stallGuard measurement error }= \pm \max (1,|S G T|)
$$

13.2 StallGuard2 Update Rate and Filter

The StallGuard2 measurement value SG_RESULT is updated with each full step of the motor. This is enough to safely detect a stall, because a stall always means the loss of four full steps. In a practical application, especially when using CoolStep, a more precise measurement might be more important than an update for each fullstep because the mechanical load never changes instantaneously from one step to the next. For these applications, the sfilt bit enables a filtering function over four load measurements. The filter should always be enabled when high-precision measurement is required. It compensates for variations in motor construction, for example due to misalignment of the phase A to phase B magnets. The filter should be disabled when rapid response to increasing load is required and for best results of sensorless homing using StallGuard.

13.3 Detecting a Motor Stall

For best stall detection, work without StallGuard filtering (sfilt=0). To safely detect a motor stall the stall threshold must be determined using a specific SGT setting. Therefore, the maximum load needs to be determined, which the motor can drive without stalling. At the same time, monitor the SG_RESULT value at this load, e.g. some value within the range 0 to 100 . The stall threshold should be a value safely within the operating limits, to allow for parameter stray. The response at an SGT setting at or near 0 gives some idea on the quality of the signal: Check the SG value without load and with maximum load. They should show a difference of at least 100 or a few 100, which shall be large compared to the offset. If you set the SGT value in a way, that a reading of 0 occurs at maximum motor load, the stall can be automatically detected by the motion controller to issue a motor stop. In the moment of the step resulting in a step loss, the lowest reading will be visible. After the step loss, the motor will vibrate and show a higher SG_RESULT reading.

13.4 Homing with StallGuard

The homing of a linear drive requires moving the motor into the direction of a hard stop. As StallGuard needs a certain velocity to work (as set by TCOOLTHRS), make sure that the start point is far enough away from the hard stop to provide the distance required for the acceleration phase. After setting up SGT and the ramp generator registers, start a motion into the direction of the hard stop and activate the stop on stall function (set sg_stop in SW_MODE). Once a stall is detected, the ramp generator stops motion and sets VACTUAL zero, stopping the motor. The stop condition also is indicated by the flag StallGuard in DRV_STATUS. After setting up new motion parameters in order to prevent the motor from restarting right away, StallGuard can be disabled, or the motor can be reenabled by reading and writing back RAMP_STAT. The write and clear function of the event_stop_sg flag in RAMP_STAT restarts the motor after expiration of TZEROWAIT in case the motion parameters have not been modified. Best results are yielded at 30% to 70% of nominal motor current and typically 1 to 5 RPS (motors smaller than NEMA17 may require higher velocities).

13.5 Limits of StallGuard2 Operation

StallGuard2 does not operate reliably at extreme motor velocities: Very low motor velocities (for many motors, less than one revolution per second) generate a low back EMF and make the measurement unstable and dependent on environment conditions (temperature, etc.). The automatic tuning procedure described above will compensate for this. Other conditions will also lead to extreme settings of SGT and poor response of the measurement value SG_RESULT to the motor load.

Very high motor velocities, in which the full sinusoidal current is not driven into the motor coils also leads to poor response. These velocities are typically characterized by the motor back EMF reaching the supply voltage.

14 CoolStep Operation

CoolStep is an automatic smart energy optimization for stepper motors based on the motor mechanical load, making them "green".

14.1 User Benefits

Energy efficiency
Motor generates less heat
Less cooling infrastructure Cheaper motor

- consumption decreased up to 75%
- improved mechanical precision
- for motor and driver
- does the job!

CoolStep allows substantial energy savings, especially for motors which see varying loads or operate at a high duty cycle. Because a stepper motor application needs to work with a torque reserve of 30% to 50%, even a constant-load application allows significant energy savings because CoolStep automatically enables torque reserve when required. Reducing power consumption keeps the system cooler, increases motor life, and allows reducing cost in the power supply and cooling components.

Reducing motor current by half results in reducing power by a factor of four.

14.2 Setting up for CoolStep

CoolStep is controlled by several parameters, but two are critical for understanding how it works:

Parameter	Description	Range	Comment
SEMIN	4-bit unsigned integer that sets a lower threshold. If $S G$ goes below this threshold, CoolStep increases the current to both coils. The 4 -bit SEMIN value is scaled by 32 to cover the lower half of the range of the 10 -bit $S G$ value. (The name of this parameter is derived from smartEnergy, which is an earlier name for CoolStep.)	$\begin{array}{\|l\|} \hline 0 \\ \hline 1 . .15 \\ \hline \end{array}$	disable CoolStep threshold is SEMIN*32
SEMAX	4-bit unsigned integer that controls an upper threshold. If SG is sampled equal to or above this threshold enough times, CoolStep decreases the current to both coils. The upper threshold is $(S E M I N+S E M A X+1) * 32$.	0... 15	threshold is $(S E M I N+S E M A X+1) * 32$

- The black line represents the SG measurement value.
- The blue line represents the mechanical load applied to the motor.
- The red line represents the current into the motor coils.

When the load increases, SG_RESULT falls below SEMIN, and CoolStep increases the current. When the load decreases, SG_RESULT rises above (SEMIN + SEMAX + 1) * 32, and the current is reduced.

Figure 14.1 CoolStep adapts motor current to the load

Five more parameters control CoolStep and one status value is returned:

Parameter	Description	Range	Comment
SEUP	Sets the current increment step. The current becomes incremented for each measured StallGuard2 value below the lower threshold.	$0 . .3$	step width is $1,2,4,8$
SEDN	Sets the number of StallGuard2 readings above the upper threshold necessary for each current decrement of the motor current.	$0 . .3$	number of StallGuard2 measurements per decrement: $32,8,2,1$
SEIMIN	Sets the lower motor current limit for CoolStep operation by scaling the IRUN current setting.	1	$0: 1 / 2$ of IRUN
$1: 1 / 4$ of IRUN			
TCOOL THRS	Lower velocity threshold for switching on CoolStep and stop on stall. Below this velocity CoolStep becomes disabled (not used in STEPIDIR mode). Adapt to the lower limit of the velocity range where StallGuard2 gives a stable result.	Specifies lower CoolStep velocity by comparing the threshold value to	
Hint: May be adapted to disable CoolStep during acceleration and deceleration phase by setting identical to VMAX.	TSTEP		

14.3 Tuning CoolStep

Before tuning CoolStep, first tune the StallGuard2 threshold level $S G T$, which affects the range of the load measurement value SG_RESULT. CoolStep uses SG_RESULT to operate the motor near the optimum load angle of $+90^{\circ}$.

The current increment speed is specified in SEUP, and the current decrement speed is specified in SEDN. They can be tuned separately because they are triggered by different events that may need different responses. The encodings for these parameters allow the coil currents to be increased much more quickly than decreased, because crossing the lower threshold is a more serious event that may require a faster response. If the response is too slow, the motor may stall. In contrast, a slow response to crossing the upper threshold does not risk anything more serious than missing an opportunity to save power.

CoolStep operates between limits controlled by the current scale parameter IRUN and the seimin bit.

14.3.1 Response Time

For fast response to increasing motor load, use a high current increment step SEUP. If the motor load changes slowly, a lower current increment step can be used to avoid motor oscillations. If the filter controlled by sfilt is enabled, the measurement rate and regulation speed are cut by a factor of four.

Hint

The most common and most beneficial use is to adapt CoolStep for operation at the typical system target operation velocity and to set the velocity thresholds according. As acceleration and decelerations normally shall be quick, they will require the full motor current, while they have only a small contribution to overall power consumption due to their short duration.

14.3.2 Low Velocity and Standby Operation

Because CoolStep is not able to measure the motor load in standstill and at very low RPM, a lower velocity threshold is provided in the ramp generator. It should be set to an application specific default value. Below this threshold the normal current setting via IRUN respectively IHOLD is valid. An upper threshold is provided by the VHIGH setting. Both thresholds can be set as a result of the StallGuard2 tuning process.

15 STEPIDIR Interface

The STEP and DIR inputs provide a simple, standard interface compatible with many existing motion controllers. The MicroPlyer STEP pulse interpolator brings the smooth motor operation of highresolution microstepping to applications originally designed for coarser stepping. In case an external step source is used, the complete integrated motion controller can be switched off. The only motion controller registers remaining active in this case are the current settings in register IHOLD_IRUN.

15.1 Timing

Figure 15.1 shows the timing parameters for the STEP and DIR signals, and the table below gives their specifications. When the dedge mode bit in the CHOPCONF register is set, both edges of STEP are active. If dedge is cleared, only rising edges are active. STEP and DIR are sampled and synchronized to the system clock. An internal analog filter removes glitches on the signals, such as those caused by long PCB traces. If the signal source is far from the chip, and especially if the signals are carried on cables, the signals should be filtered or differentially transmitted.

STEP and DIR interface timing	AC-Characteristics clock period is tclk					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
step frequency (at maximum microstep resolution)	$\mathrm{f}_{\text {STEP }}$	dedge=0			½ fcik	
		dedge $=1$			$1 / 4 \mathrm{fCLK}$	
fullstep frequency	$\mathrm{f}_{\text {FS }}$				$\mathrm{f}_{\text {CLK }} / 512$	
STEP input low time *)	ts_{5}		$\max \left(\right.$ thilits, $^{\prime}$ tcuk+20)	100		ns
STEP input high time *)	$\mathrm{t}_{5 \mathrm{H}}$	C - E	$\max \left(\mathrm{t}_{\text {FILTSD }}\right.$ tcık+20)	100	\square	ns
DIR to STEP setup time	$t_{\text {DSU }}$		20			ns
DIR after STEP hold time	tosh		20			ns
STEP and DIR spike filtering time *)	trilisd	rising and falling edge	13	20	30	ns
STEP and DIR sampling relative to rising CLK input	$\mathrm{tsDCLK}^{\text {a }}$	before rising edge of CLK input		trilisd		ns

*) These values are valid with full input logic level swing, only. Asymmetric logic levels will increase filtering delay triltsd due to an internal input RC filter.

15.2 Changing Resolution

The TMC5160 includes an internal microstep table with 1024 sine wave entries to generate sinusoidal motor coil currents. These 1024 entries correspond to one electrical revolution or four fullsteps. The microstep resolution setting determines the step width taken within the table. Depending on the DIR input, the microstep counter is increased (DIR=0) or decreased (DIR=1) with each STEP pulse by the step width. The microstep resolution determines the increment respectively the decrement. At maximum resolution, the sequencer advances one step for each step pulse. At half resolution, it advances two steps. Increment is up to 256 steps for fullstepping. The sequencer has special provision to allow seamless switching between different microstep rates at any time. When switching to a lower microstep resolution, it calculates the nearest step within the target resolution and reads the current vector at that position. This behavior especially is important for low resolutions like fullstep and halfstep, because any failure in the step sequence would lead to asymmetrical run when comparing a motor running clockwise and counterclockwise.

EXAMPLES:

Fullstep: Cycles through table positions: 128, 384, 640 and $896\left(45^{\circ}, 135^{\circ}, 225^{\circ}\right.$ and 315° electrical position, both coils on at identical current). The coil current in each position corresponds to the RMS-Value (0.71^{*} amplitude). Step size is 256 (90° electrical)
Half step: The first table position is 64 (22.5° electrical), Step size is 128 (45° steps)
Quarter step: The first table position is $32\left(90^{\circ} / 8=11.25^{\circ}\right.$ electrical), Step size is 64 (22.5° steps)

This way equidistant steps result and they are identical in both rotation directions. Some older drivers also use zero current (table entry $0,0^{\circ}$) as well as full current $\left(90^{\circ}\right)$ within the step tables. This kind of stepping is avoided because it provides less torque and has a worse power dissipation in driver and motor.

Step position	table position	current coil A	current coil B
Half step 0	64	38.3%	92.4%
Full step 0	128	70.7%	70.7%
Half step 1	192	92.4%	38.3%
Half step 2	320	92.4%	-38.3%
Full step 1	384	70.7%	-70.7%
Half step 3	448	38.3%	-92.4%
Half step 4	576	-38.3%	-92.4%
Full step 2	640	-70.7%	-70.7%
Half step 5	704	-92.4%	-38.3%
Half step 6	832	-92.4%	38%
Full step 3	896	-70.7%	70.7%
Half step 7	960	-38.3%	92.4%

15.3 MicroPlyer and Stand Still Detection

For each active edge on STEP, MicroPlyer produces microsteps at $256 x$ resolution, as shown in Figure 15.2. It interpolates the time in between of two step impulses at the step input based on the last step interval. This way, from 2 microsteps (128 microstep to 256 microstep interpolation) up to 256 microsteps (full step input to 256 microsteps) are driven for a single step pulse.

Enable MicroPlyer by setting the intpol bit in the CHOPCONF register. GCONF.faststandstill allows reduction of standstill detection time to $2^{\wedge} 18$ clocks (-20 ms)

The step rate for the interpolated 2 to 256 microsteps is determined by measuring the time interval of the previous step period and dividing it into up to 256 equal parts. The maximum time between two microsteps corresponds to 2^{20} (roughly one million system clock cycles), for an even distribution of 256 microsteps. At 12 MHz system clock frequency, this results in a minimum step input frequency of 12 Hz for MicroPlyer operation (50 Hz with faststandstill $=1$). A lower step rate causes the STST bit to be set, which indicates a standstill event. At that frequency, microsteps occur at a rate of (system clock frequency)/2 $2^{16} \sim 256 \mathrm{~Hz}$. When a stand still is detected, the driver automatically switches the motor to holding current IHOLD.

Hint

MicroPlyer only works perfectly with a stable STEP frequency. Do not use the dedge option if the STEP signal does not have a 50% duty cycle.

Figure 15.2 MicroPlyer microstep interpolation with rising STEP frequency (Example: 16 to 256)
In Figure 15.2, the first STEP cycle is long enough to set the standstill bit stst. This bit is cleared on the next STEP active edge. Then, the external STEP frequency increases. After one cycle at the higher rate MicroPlyer adapts the interpolated microstep rate to the higher frequency. During the last cycle at the slower rate, MicroPlyer did not generate all 16 microsteps, so there is a small jump in motor angle between the first and second cycles at the higher rate. With the flag GCONF.faststandstill enabled, standstill detection is after $2^{\wedge} 18$ clocks (rather than $2^{\wedge} 20$ clocks) without step pulse. This allows faster current reduction for energy saving in drives with short stand still times.

16 DIAG Outputs

16.1 STEPIDIR Mode

Operation with an external motion controller often requires quick reaction to certain states of the stepper motor driver. Therefore, the DIAG outputs supply a configurable set of different real time information complementing the STEPIDIR interface.

Both, the information available at DIAG0 and DIAG1 can be selected as well as the type of output (low active open drain - default setting, or high active push-pull). In order to determine a reset of the driver, DIAGO always shows a power-on reset condition by pulling low during a reset condition. Figure 16.1 shows the available signals and control bits.

Figure 16.1 DIAG outputs in STEPIDIR mode
The stall output signal allows StallGuard2 to be handled by the external motion controller like a stop switch. The index output signals the microstep counter zero position, to allow the application to reference the drive to a certain current pattern. Chopper on-state shows the on-state of both coil choppers (alternating) when working in SpreadCycle or constant off time in order to determine the duty cycle. The DcStep skipped information is an alternative way to find out when DcStep runs with a velocity below the step velocity. It toggles with each step not taken by the sequencer.

Attention

The duration of the index pulse corresponds to the duration of the microstep. When working without interpolation at less than 256 microsteps, the index time goes down to two CLK clock cycles.

16.2 Motion Controller Mode

In motion controller mode, the DIAG outputs deliver a position compare signal to allow exact triggering of external logic, and an interrupt signal in order to trigger software to certain conditions within the motion ramp. Either an open drain (active low) output signal can be chosen (default), or an active high push-pull output signal. When using the open drain output, an external pull up resistor in the range $4.7 \mathrm{k} \Omega$ to $33 \mathrm{k} \Omega$ is required. DIAGO also becomes driven low upon a reset condition. However
the end of the reset condition cannot be determined by monitoring DIAGO in this configuration, because event_pos_reached flag also becomes active upon reset and thus the pin stays actively low after the reset condition. In order to safely determine a reset condition, monitor the reset flag by SPI or read out any register to confirm that the chip is powered up.

Figure 16.2 DIAG outputs with SD_MODE=0

17 DcStep

DcStep is an automatic commutation mode for the stepper motor. It allows the stepper to run with its target velocity as commanded by the ramp generator as long as it can cope with the load. In case the motor becomes overloaded, it slows down to a velocity, where the motor can still drive the load. This way, the stepper motor never stalls and can drive heavy loads as fast as possible. Its higher torque available at lower velocity, plus dynamic torque from its flywheel mass allow compensating for mechanical torque peaks. In case the motor becomes completely blocked, the stall flag becomes set.

17.1 User Benefits

	Motor	-
deStep	never loses steps	
IMIIIII	Application	- works as fast as possible
	Acceleration automatically as high as possible Energy efficiency Cheaper motor	- highest at speed limit

17.2 Designing-In DcStep

In a classical application, the operation area is limited by the maximum torque required at maximum application velocity. A safety margin of up to 50% torque is required, in order to compensate for unforeseen load peaks, torque loss due to resonance and aging of mechanical components. DcStep allows using up to the full available motor torque. Even higher short time dynamic loads can be overcome using motor and application flywheel mass without the danger of a motor stall. With DcStep the nominal application load can be extended to a higher torque only limited by the safety margin near the holding torque area (which is the highest torque the motor can provide). Additionally, maximum application velocity can be increased up to the actually reachable motor velocity.

$M_{\text {max: }}$: Motor pull-out torque at $v=0$
Safety margin: Classical application operation area is limited by a certain percentage of motor pull-out torque

Figure 17.1 DcStep extended application operation area

Quick Start

For a quick start, see the Quick Configuration Guide in chapter 22. For detail configuration procedure see Application Note ANOO3-DcStep

17.3 DcStep Integration with the Motion Controller

DcStep requires only a few settings. It directly feeds back motor motion to the ramp generator, so that it becomes seamlessly integrated into the motion ramp, even if the motor becomes overloaded with respect to the target velocity. DcStep operates the motor in fullstep mode at the ramp generator target velocity VACTUAL or at reduced velocity if the motor becomes overloaded. It requires setting the minimum operation velocity VDCMIN. VDCMIN shall be set to the lowest operating velocity where DcStep gives a reliable detection of motor operation. The motor never stalls unless it becomes braked to a velocity below VDCMIN. In case the velocity should fall below this value, the motor would restart once its load is released, unless the stall detection becomes enabled (set sg_stop). Stall detection is covered by StallGuard2.

Figure 17.2 Velocity profile with impact by overload situation

Hint

DcStep requires that the phase polarity of the sine wave is positive within the MSCNT range 768 to 255 and negative within 256 to 767 . The cosine polarity must be positive from 0 to 511 and negative from 512 to 1023 . A phase shift by 1 would disturb DcStep operation. Therefore it is advised to work with the default wave. Please refer chapter 18.2 for an initialization with the default table.

17.4 Stall Detection in DcStep Mode

While DcStep is able to decelerate the motor upon overload, it cannot avoid a stall in every operation situation. Once the motor is blocked, or it becomes decelerated below a motor dependent minimum velocity where the motor operation cannot safely be detected any more, the motor may stall and loose steps. In order to safely detect a step loss and avoid restarting of the motor, the stop on stall can be enabled (set flag sg_stop). In this case VACTUAL becomes set to zero once the motor is stalled. It remains stopped until reading the RAMP_STAT status flags. The flag event_stop_sg shows the active stop condition. A StallGuard2 load value also is available during DcStep operation. The range of values is limited to 0 to 255, in certain situations up to 511 will be read out. In order to enable StallGuard, also set TCOOLTHRS corresponding to a velocity slightly above VDCMIN or up to VMAX.

Stall detection in this mode may trigger falsely due to resonances, when flywheel loads are loosely coupled to the motor axis.

Parameter	Description	Range	Comment
vhighfs vhighchm	These chopper configuration flags in CHOPCONF need to be set for DcStep operation. As soon as VDCMIN becomes exceeded, the chopper becomes switched to fullstepping.	0 / 1	set to 1 for DcStep
TOFF	DcStep often benefits from an increased off time value in CHOPCONF. Settings >2 should be preferred.	2... 15	Settings 8 ... 15 do not make any difference to setting 8 for DcStep operation.
VDCMIN	This is the lower threshold for DcStep operation when using internal ramp generator. Below this threshold, the motor operates in normal microstep mode. In DcStep operation, the motor operates at minimum VDCMIN, even when it is completely blocked. Tune together with DC_TIME setting. Activation of StealthChop also disables DcStep.	0... 2^22	0 : Disable DcStep Set to the lower velocity limit for DcStep operation.
DC_IIME	This setting controls the reference pulse width for DcStep load measurement. It must be optimized for robust operation with maximum motor torque. A higher value allows higher torque and higher velocity, a lower value allows operation down to a lower velocity as set by VDCMIN. Check best setting under nominal operation conditions, and re-check under extreme operating conditions (e.g. lowest operation supply voltage, highest motor temperature, and highest supply voltage, lowest motor temperature).	0... 1023	Lower limit for the setting is: $t_{\text {BLANK }}$ (as defined by TBL) in clock cycles $+n$ with n in the range 1 to 100 (for a typical motor)
DC_SG	This setting controls stall detection in DcStep mode. Increase for higher sensitivity. A stall can be used as an error condition by issuing a hard stop for the motor. Enable sg_stop flag for stopping the motor upon a stall event. This way the motor will be stopped once it stalls.	0... 255	Set slightly higher than DC_TIME / 16

17.5 Measuring Actual Motor Velocity in DcStep Operation

DcStep has the ability to reduce motor velocity in case the motor becomes slower than the target velocity due to mechanical load. VACTUAL shows the ramp generator target velocity. It is not influenced by DcStep. Measuring DcStep velocity is possible based on the position counter XACTUAL.

Therefore take two snapshots of the position counter with a known time difference:

$$
V A C T U A L_{D C S T E P}=\frac{X A C T U A L(\text { time } 2)-X A C T U A L(\text { time } 1)}{\text { time } 2-\text { time } 1} * \frac{2^{24}}{f_{C L K}}
$$

Example:

At 16.0 MHz clock frequency, a 0.954 second measurement delay would directly yield in the velocity value, a 9.54 ms delay would yield in $1 / 100$ of the actual DcStep velocity.

To grasp the time interval as precisely as possible, snapshot a timer each time the transmission of XACTUAL from the IC starts or ends. The rising edge of NCS for SPI transmission provides the most exact time reference.

17.6 DcStep with STEP/DIR Interface

The TMC5160 provides two ways to use DcStep when interfaced to an external motion controller. The first way gives direct control of the DcStep step execution to the external motion controller, which must react to motor overload and is allowed to override a blocked motor situation. The second way assumes that the external motion controller cannot directly react to DcStep signals. The TMC5160 automatically reduces the motor velocity or stops the motor upon overload. In order to allow the motion controller to react to the reduced real motor velocity in this mode, the counter LOST_STEPS gives the number of steps which have been commanded, but not taken by the motor controller. The motion controller can later on read out LOST_STEPS and drive any missing number of steps. In case of a blocked motor it tries moving it with the minimum velocity as programmed by VDCMIN.

Enabling DcStep automatically sets the chopper to constant TOFF mode with slow decay only. This way, no re-configuration is required when switching from microstepping mode to DcStep and back.

DcStep operation is controlled by three pins in STEP and DIR mode:
DCEN - Forces the driver to DcStep operation if high. A velocity based activation of DcStep is controlled by TPWMTHRS when using StealthChop operation for low velocity settings. In this case, DcStep is disabled while in StealthChop mode, i.e. at velocities below the StealthChop switching velocity.

- DCO - Informs the motion controller when motor is not ready to take a new step (low level). The motion controller shall react by delaying the next step until DCO becomes high. The sequencer can buffer up to the effective number of microsteps per fullstep to allow the motion controller to react to assertion of DCO. In case the motor is blocked this wait situation can be terminated after a timeout by providing a long > 1024 clock STEP input, or via the internal VDCMIN setting.
- DCIN - Commands the driver to wait with step execution and to disable DCO. This input can be used for synchronization of multiple drivers operating with DcStep.

17.6.1 Using LOST_STEPS for DcStep Operation

This is the simplest possibility to integrate DcStep with an external motion controller: The external motion controller enables DCStep using DCEN or the internal velocity threshold. The TMC5160 tries to follow the steps. In case it needs to slow down the motor, it counts the difference between incoming steps on the STEP signal and steps going to the motor. The motion controller can read out the difference and compensate for the difference after the motion or on a cyclic basis. Figure 17.3 shows the principle (simplified).

In case the motor driver needs to postpone steps due to detection of a mechanical overload in DcStep, and the motion controller does not react to this by pausing the step generation, LOST_STEPS becomes incremented or decremented (depending on the direction set by DIR) with each step which is not taken. This way, the number of lost steps can be read out and executed later on or be appended to the motion. As the driver needs to slow down the motor while the overload situation persists, the application will benefit from a high microstepping resolution, because it allows more seamless acceleration or deceleration in DcStep operation. In case the application is completely blocked, VDCMIN sets a lower limit to the step execution. If the motor velocity falls below this limit, however an unknown number of steps is lost and the motor position is not exactly known any more. DCIN allows for step synchronization of two drivers: it stops the execution of steps if low and sets DCO low.

Figure 17.3 Motor moving slower than STEP input due to light overload. LOSTSTEPS incremented

17.6.2 DCO Interface to Motion Controller

In STEPIDIR mode, DCEN enables DcStep. It is up to the external motion controller to enable DcStep either, once a minimum step velocity is exceeded within the motion ramp, or to use the automatic threshold VDCMIN for DcStep enable.

The STEPIDIR interface works in microstep resolution, even if the internal step execution is based on fullstep. This way, no switching to a different mode of operation is required within the motion controller. The DcStep output DCO signals if the motor is ready for the next step based on the DcStep measurement of the motor. If the motor has not yet mechanically taken the last step, this step cannot be executed, and the driver stops automatically before execution of the next fullstep. This situation is signaled by DCO. The external motion controller shall stop step generation if DCOUT is low and wait until it becomes high again. Figure 17.5 shows this principle. The driver buffers steps during the waiting period up to the number of microstep setting minus one. In case, DCOUT does not go high within the lower step limit time e.g. due to a severe motor overload, a step can be enforced: override the stop status by a long STEP pulse with min. 1024 system clocks length. When using internal clock, a pulse length of minimum 125μ s is recommended.

Figure 17.4 Full signal interconnection for DcStep

Figure 17.5 DCO Interface to motion controller - step generator stops when DCO is asserted

18 Sine-Wave Look-up Table

The TMC5160 driver provides a programmable look-up table for storing the microstep current wave. As a default, the table is pre-programmed with a sine wave, which is a good starting point for most stepper motors. Reprogramming the table to a motor specific wave allows drastically improved microstepping especially with low-cost motors.

18.1 User Benefits

Microstepping
Motor
Torque

- extremely improved with low cost motors
- runs smooth and quiet
- reduced mechanical resonances yields improved torque

18.2 Microstep Table

In order to minimize required memory and the amount of data to be programmed, only a quarter of the wave becomes stored. The internal microstep table maps the microstep wave from 0° to 90°. It becomes symmetrically extended to 360°. When reading out the table the 10 -bit microstep counter MSCNT addresses the fully extended wave table. The table is stored in an incremental fashion, using each one bit per entry. Therefore only 256 bits ($o f s 00$ to ofs255) are required to store the quarter wave. These bits are mapped to eight 32 bit registers. Each ofs bit controls the addition of an inclination $W x$ or $W x+1$ when advancing one step in the table. When $W x$ is 0 , a 1 bit in the table at the actual microstep position means "add one" when advancing to the next microstep. As the wave can have a higher inclination than 1 , the base inclinations $W x$ can be programmed to $-1,0,1$, or 2 using up to four flexible programmable segments within the quarter wave. This way even negative inclination can be realized. The four inclination segments are controlled by the position registers X1 to X3. Inclination segment 0 goes from microstep position 0 to $X 1-1$ and its base inclination is controlled by W0, segment 1 goes from $X 1$ to $X 2-1$ with its base inclination controlled by W1, etc.

When modifying the wave, care must be taken to ensure a smooth and symmetrical zero transition when the quarter wave becomes expanded to a full wave. The maximum resulting swing of the wave should be adjusted to a range of -248 to 248 , in order to give the best possible resolution while leaving headroom for the hysteresis based chopper to add an offset.

Figure 18.1 LUT programming example

When the microstep sequencer advances within the table, it calculates the actual current values for the motor coils with each microstep and stores them to the registers CUR_A and CUR_B. However the incremental coding requires an absolute initialization, especially when the microstep table becomes modified. Therefore CUR_A and CUR_B become initialized whenever MSCNT passes zero.

Two registers control the starting values of the tables:

- As the starting value at zero is not necessarily 0 (it might be 1 or 2), it can be programmed into the starting point register START_SIN.
- In the same way, the start of the second wave for the second motor coil needs to be stored in START_SIN90. This register stores the resulting table entry for a phase shift of 90° for a 2 phase motor.

Hint

Refer chapter 6.5 for the register set and for the default table function stored in the drivers. The default table is a good base for realizing an own table.
The TMC5160-EVAL comes with a calculation tool for own waves.

Initialization example for the default microstep table:

$$
\begin{aligned}
& \text { MSLUT[0] }=\% 10101010101010101011010101010100=0 \times \text { AAAAB554 } \\
& \text { MSLUT[1] }=\% 01001010100101010101010010101010=0 \times 4 \text { A9554AA } \\
& \text { MSLUT[2] }=\% 00100100010010010010100100101001=0 \times 24492929 \\
& \text { MSLUT[3] }=\% 00010000000100000100001000100010=0 \times 10104222 \\
& \text { MSLUT[4]= \%11111011111111111111111111111111 }=0 \times \text { FBFFFFFF } \\
& \text { MSLUT[5]= \%10110101101110110111011101111101 }=0 \times \text { B5BB777D } \\
& \text { MSLUT[6]= } \% 01001001001010010101010101010110=0 \times 49295556 \\
& \text { MSLUT[7] }=\% 00000000010000000100001000100010=0 \times 00404222
\end{aligned}
$$

MSLUTSEL= OxFFFF8056:
X1=128, X2=255, X3=255
$W 3=\% 01, W 2=\% 01, W 1=\% 01, W 0=\% 10$
MSLUTSTART $=0 \times 00 F 70000$:
START_SIN_0=0, START_SIN90= 247

19 Emergency Stop

The driver provides a negative active enable pin ENN to safely switch off all power MOSFETs. This allows putting the motor into freewheeling. Further, it is a safe hardware function whenever an emergency-stop not coupled to software is required. Some applications may require the driver to be put into a state with active holding current or with a passive braking mode. This is possible by programming the pin ENCA_DCIN to act as a step disable function. Set GCONF flag stop_enable to activate this option. Whenever ENCA_DCIN becomes pulled up, the motor will stop abruptly and go to the power down state, as configured via IHOLD, IHOLDDELAY and StealthChop standstill options. Disabling the driver via ENN will require three clock cycles to safely switch off the driver.

20 ABN Incremental Encoder Interface

The TMC5160 is equipped with an incremental encoder interface for ABN encoders. The encoder inputs are multiplexed with other signals in order to keep the pin count of the device low. The basic selection of the peripheral configuration is set by the register GCONF. The use of the N channel is optional, as some applications might use a reference switch or stall detection rather than an encoder N channel for position referencing. The encoders give positions via digital incremental quadrature signals (usually named A and B) and a clear signal (usually named N for null or Z for zero).

N Signal

The N signal can be used to clear the position counter or to take a snapshot. To continuously monitor the N channel and trigger clearing of the encoder position or latching of the position, where the N channel event has been detected, set the flag clr_cont. Alternatively it is possible to react to the next encoder N channel event only, and automatically disable the clearing or latching of the encoder position after the first N signal event (flag clr_once). This might be desired because the encoder gives this signal once for each revolution.

Some encoders require a validation of the N signal by a certain configuration of A and B polarity. This can be controlled by pol_ A and pol_B flags in the ENCMODE register. For example, when both pol_ A and pol_B are set, an active N-event is only accepted during a high polarity of both, A and B channel.

For clearing the encoder position ENC_POS with the next active N event set clr_enc_ $x=1$ and clr_once $=1$ or clr_cont = 1 .

The encoder constant ENC_CONST is added to or subtracted from the encoder counter on each polarity change of the quadrature signals AB of the incremental encoder. The encoder constant ENC_CONST represents a signed fixed point number (16.16) to facilitate the generic adaption between motors and encoders. In decimal mode, the lower 16 bits represent a number between 0 and 9999 . For stepper motors equipped with incremental encoders the fixed number representation allows very comfortable parameterization. Additionally, mechanical gearing can easily be taken into account. Negating the sign of ENC_CONST allows inversion of the counting direction to match motor and encoder direction.

Examples:

- Encoder factor of 1.0: ENC_CONST = 0x0001.0x0000 = FACTOR.FRACTION
- Encoder factor of -1.0 : ENC_CONST $=0 x F F F F .0 x 0000$. This is the two's complement of 0×00010000. It equals (2^16-(FACTOR+1)).(2^16-FRACTION)
- Decimal mode encoder factor 25.6: 00025.6000 $=0 \times 0019.0 \times 1770=$ FACTOR.DECIMALS
- Decimal mode encoder factor -25.6: 0xFFE6.4000 = 0xFFE6.0x0FAO. This equals (2^16-
(FACTOR+1)).(10000-DECIMALS)

The Encoder Counter X_ENC

The encoder counter $X_{-} E N C$ holds the current encoder position ready for read out. Different modes concerning handling of the signals A, B, and N take into account active low and active high signals found with different types of encoders. For more details please refer to the register mapping in section 6.4.

The Register ENC_STATUS

The register ENC_STATUS holds the status concerning the event of an encoder clear upon an N channel signals. The register ENC_LATCH stores the actual encoder position on an N signal event.

20.1 Encoder Timing

The encoder inputs use analog and digital filtering to ensure reliable operation even with increased cable length. The maximum continuous counting rate is limited by input filtering to $2 / 3$ of $\mathrm{f}_{\text {cLk }}$.

Encoder interface timing	AC-Characteristics clock period is tclk					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Encoder counting frequency	$\mathrm{f}_{\mathrm{CNT}}$	-		$<2 / 3 \mathrm{f}_{\text {cLK }}$	$\mathrm{f}_{\text {CLK }}$	
A/B/N input low time	$\mathrm{t}_{\text {ABNL }}$		3 tcı +20			ns
A/B/N input high time	$\mathrm{t}_{\text {ABNH }}$		3 tak +20			ns
A/B/N spike filtering time	$\mathrm{t}_{\text {filtabn }}$	Rising and fatling edge		3 tcık		

20.2 Setting the Encoder to Match Motor Resolution

Encoder example settings for motor parameters: USC $=256 \mu$ steps, 200 fullstep motor Factor $=$ FSC*USC / encoder resolution

Encoder example settings for a 200 fullstep Motor with 256 MICROSTEPS

Encoder resolution	Required encoder factor	Comment		
200	256			
360	142.2222 $=9320675.5555 / 2^{\wedge} 16$ $=1422222.2222 / 10000$	No exact match possible!		
500	102.4 $=6710886.4 / 2^{\wedge} 16$ $=1024000 / 10000$	Exact match with decimal setting		
1000	51.2		\quad	Exact match with decimal setting
:---				
1024				
4000				

Example:

The encoder constant register shall be programmed to 51.2 in decimal mode. Therefore, set $E N C_{-} C O N S T=51 * 2^{16}+0.2 * 10000$

20.3 Closing the Loop

Depending on the application, an encoder can be used for different purposes. Medical applications often require an additional and independent monitoring to detect hard or soft failure. Upon failure, the machine can be stopped and restarted manually. Use ENC_DEVIATION setting and interrupt to safely detect a step loss failure / mismatch between motor and encoder.

Less critical applications may use the encoder to detect failure, stop the motors upon step loss and restart automatically. A different use of the encoder allows increased positioning precision by positioning directly to encoder positions. The application can modify target positions based on the deviation, or even regularly update the actual position with the encoder position.

To realize a directly encoder based commutation, TRINAMIC offers the new S-ramp closed loop motion

21 DC Motor or Solenoid

The TMC5160 can drive one or two DC motors using one coil output per DC motor. Either a torque limited operation, or a voltage based velocity control with optional torque limit is possible.

Configuration and Control

Set the flag direct_mode in the GCONF register. In direct mode, the coil current polarity and coil current, respectively the PWM duty cycle become controlled by register XTARGET (0x2D). Bits 8..0 control motor A and Bits $24 . .16$ control motor B PWM. Additionally to this setting, the current limit is scaled by IHOLD. The STEPIDIR inputs and the motion controller are not used in this mode.

PWM Duty Cycle Velocity Control

In order to operate the motor at different velocities, use the StealthChop voltage PWM mode in the following configuration: en_pwm_mode $=1$, pwm_autoscale $=0$, PWM_AMPL $=255$, PWM_GRAD $=4$, IHOLD $=31$
Set $T O F F>0$ to enable the driver.
In this mode the driver behaves like a 4-quadrant power supply. The direct mode setting of PWM A and PWM B using XTARGET controls motor voltage, and thus the motor velocity. Setting the corresponding PWM bits between -255 and +255 (signed, two's complement numbers) will vary motor voltage from -100% to 100%. With pwm_autoscale $=0$, current sensing is not used and the sense resistors should be eliminated or $150 \mathrm{~m} \Omega$ or less to avoid excessive voltage drop when the motor becomes heavily loaded up to 2.5A. Especially for higher current motors, make sure to slowly accelerate and decelerate the motor in order to avoid overcurrent or triggering driver overcurrent detection.

To activate optional motor freewheeling, set $I H O L D=0$ and $F R E E W H E E L=\% 01$.

Additional Torque Limit

In order to additionally take advantage of the motor current limitation (and thus torque controlled operation) in StealthChop mode, use automatic current scaling (pwm_autoscale =1). The actual current limit is given by IHOLD and scaled by the respective motor PWM amplitude, e.g. PWM $=128$ yields in 50% motor velocity and 50% of the current limit set by IHOLD. In case two DC motors are driven in voltage PWM mode, note that the automatic current regulation will work only for the motor which has the higher absolute PWM setting. The PWM of the second motor also will be scaled down in case the motor with higher PWM setting reaches its current limitation.

Purely Torque Limited Operation

For a purely torque limited operation of one or two motors, spread cycle chopper individually regulates motor current for both full bridge motor outputs. When using SpreadCycle, the upper motor velocity is limited by the supply voltage only (or as determined by the load on the motor).

21.1 Solenoid Operation

The same way, one or two solenoids (i.e. magnetic coil actuators) can be operated using SpreadCycle chopper. For solenoids, it is often desired to have an increased current for a short time after switching on, and reduce the current once the magnetic element has switched. This is automatically possible by taking advantage of the automatic current scaling (IRUN, IHOLD, IHOLDDELAY and TPOWERDOWN). The current scaling in direct_mode is still active, but will not be triggered if no step impulse is supplied. Therefore, a step impulse must be given to the STEP input whenever one of the coils shall be switched on. This will increase the current for both coils at the same time.

22 Quick Configuration Guide

This guide is meant as a practical tool to come to a first configuration and do a minimum set of measurements and decisions for tuning the driver. It does not cover all advanced functionalities, but concentrates on the basic function set to make a motor run smoothly. Once the motor runs, you may decide to explore additional features, e.g. freewheeling and further functionality in more detail. A current probe on one motor coil is a good aid to find the best settings, but it is not a must.

Current Setting and First Steps with StealthChop

Figure 22.1 Current setting and first steps with StealthChop

Tuning StealthChop and SpreadCycle

Figure 22.2 Tuning StealthChop and SpreadCycle

Moving the Motor Using the Motion Controller

Figure 22.3 Moving the motor using the motion controller

Enabling CoolStep (Only in Combination with SpreadCycle)

Figure 22.4 Enabling CoolStep (only in combination with SpreadCycle)

Setting up DcStep

Figure 22.5 Setting up DcStep

published by WWW.SKYTECH.IR

23 Getting Started

Please refer to the TMC5160 evaluation board to allow a quick start with the device, and in order to allow interactive tuning of the device setup in your application. Chapter 22 will guide you through the process of correctly setting up all registers.

23.1 Initialization Examples

SPI datagram example sequence to enable the driver for step and direction operation and initialize the chopper for SpreadCycle operation and for StealthChop at $<30 \mathrm{RPM}$ @ 12 MHz clock:

> SPI send: $0 \times E C 000100 C 3 ; / /$ CHOPCONF: TOFF=3, HSTRT=4, HEND=1, TBL=2, CHM=0 (SpreadCycle) SPI send: 0×9000061 FOA; // IHOLD_IRUN: IHOLD=10, IRUN=31 (max. current), IHOLDDELAY=6 SPI send: $0 \times 910000000 \mathrm{~A} ; /$ I/ TPOWERDOWN=10: Delay before power down in stand still SPI send: 0×8000000004; I/ EN_PWM_MODE=1 enables StealthChop (with default PWM_CONF) SPI send: $0 \times 93000001 \mathrm{~F}$; I/ TPWM_THRS=500 yields a switching velocity about $35000=$ ca. $30 R P M$

SPI sample sequence to enable and initialize the motion controller and move one rotation (51200 microsteps) using the ramp generator. A read access querying the actual position is also shown.

For UART based operation it is important to make sure that the CRC byte is correct. The following example shows initialization for the driver with slave address 1 (NAI pin high). It programs the driver to SpreadCycle mode and programs the motion controller for a constant velocity move and then read accesses the position and actual velocity registers:

UART write: $0 \times 050 \times 010 x E C 0 \times 000 \times 010 \times 000 x C 50 x D 3$;
UART write: $0 \times 050 \times 010 \times 900 \times 000 \times 010 \times 140 \times 050 x D 8$;
UART write: $0 \times 050 \times 010 \times A 60 \times 000 \times 000 \times 130 \times 880 \times B 4$
UART write: $0 \times 050 \times 010 \times A 70 \times 000 \times 000 \times 4 E 0 \times 200 \times 85$;
UART write: $0 \times 050 \times 010 x A 00 \times 000 \times 000 \times 000 \times 010 x A 3$;
I/ Now motor should start rotating
UART write: $0 \times 050 \times 010 \times 210 \times 6 \mathrm{~B}$;
UART read 8 bytes;
UART write: $0 \times 050 \times 010 \times 220 \times 25$;
UART read 8 bytes;
// TOFF=5, HEND=1, HSTR=4,
// TBL=2, MRES=0, CHM=0
// $\mathrm{IHOLD}=5, \mathrm{IRUN}=20$, IHOLDDELAY=1 I/ AMAX=5000 // VMAX=20000 // RAMPMODE=1 (positive velocity) // Query XACTUAL
// Query VACTUAL

Hint

Tune the configuration parameters for your motor and application for optimum performance.

24 Standalone Operation

For standalone operation, no SPI interface is required to configure the TMC5160. All pins with suffix CFG0 to CFG6 have a special meaning in this mode and can bei tied either to VCC_IO or to GND.

Figure 24.1 Standalone operation with TMC5160 (pins shown with their standalone mode names)

To activate standalone mode, tie pin SPI_MODE to GND and pin SD_MODE high. In this mode, the driver acts as a pure STEP and DIR driver. SPI and single wire are off. The driver works in SpreadCycle mode or StealthChop mode. With regard to the register set, the following settings are activated:

The following settings are affected by the CFG pins in order to ensure correct configuration:

CFG0/CFG1: CONFIGURATION OF MICROSTEP RESOLUTION FOR STEP INPUT		
CFG1	CFG0	Microstep Setting
GND	GND	8 microsteps, MRES=5
GND	VCC_IO	16 microsteps, MRES=4
VCC_IO	GND	32 microsteps, MRES=3
VCC_IO	VCC_IO	64 microsteps, MRES $=2$

CFG4/CFG3/CFG2: ConFIGURATION OF RUN CURRENT			
CFG4	CFG3	CFG2	IRUN Setting
GND	GND	GND	IRUN $=16$
GND	GND	VCC_IO	IRUN $=18$
GND	VCC_IO	GND	IRUN $=20$
GND	VCC_IO	VCC_IO	IRUN $=22$
VCC_IO	GND	GND	IRUN $=24$
VCC_IO	GND	VCC_IO	IRUN $=26$
VCC_IO	VCC_IO	GND	IRUN $=28$
VCC_IO	VCC_IO	VCC_IO	IRUN $=31$

CFG5: Selection OF CHOPPER MODE	
CFG5	Chopper Setting
GND	SpreadCycle operation. (TOFF=3)
VCC_IO	StealthChop operation. (GCONF.en_PWM_mode=1)

CFG6: Configuration of Hold Current Reduction

CFG6*)	Chopper Setting
GND	No hold current reduction. IHOLD=IRUN
VCC_IO	Reduction to 50%. IHOLD $=1 / 2$ IRUN

Hint

Be sure to allow the motor to rest for at least 100 ms (assuming a minimum of 10 MHz fCLK) before starting a motion using StealthChop. This will allow the current regulation to set the initial motor current.

*) CFG6: Attention

CFG6 pin draws significant current (20 mA) when driven to a different level than CFG5, because the output driver tries to make CFG6 level equal to CFG5. Therefore, a 0 Ohm resistor is required to pull up/down CFG6. Due to this, setting CFG6 different from CFG5 is only recommended with external VCC_IO supply at 3.3V level.

Attention:

DIAG outputs are not configured per default. They can be activated using the interfaces before switching to standalone mode.

25 External Reset

The chip is loaded with default values during power on via its internal power-on reset. In order to reset the chip to power on defaults, any of the supply voltages monitored by internal reset circuitry (VSA, +5 VOUT or VCC_IO) must be cycled. VCC is not monitored. Therefore VCC must not be switched off during operation of the chip. As +5 VOUT is the output of the internal voltage regulator, it cannot be cycled via an external source except by cycling VSA. It is easiest and safest to cycle VCC_IO in order to completely reset the chip. Also, current consumed from VCC_IO is low and therefore it has simple driving requirements. Due to the input protection diodes not allowing the digital inputs to rise above VCC_IO level, all inputs must be driven low during this reset operation. When this is not possible, an input protection resistor may be used to limit current flowing into the related inputs.

In case, VCC becomes supplied by an external source, make sure that VCC is at a stable value above the lower operation limit once the reset ends. This normally is satisfied when generating a 3.3 V VCC_IO from the +5 V supply supplying the VCC pin, because it will then come up with a certain delay.

26 Clock Oscillator and Input

The clock is the timing reference for all functions: the chopper, the velocity, the acceleration control, etc. Many parameters are scaled with the clock frequency, thus a precise reference allows a more deterministic result. The factory-trimmed on-chip clock oscillator provides timing in case no external clock is easily available.

26.1 Using the Internal Clock

Directly tie the CLK input to GND near to the IC if the internal clock oscillator is to be used. It will be sufficient for applications, where a velocity precision of roughly $+-4 \%$ is tolerable.

26.2 Using an External Clock

When an external clock is available, a frequency of 10 MHz to 16 MHz is recommended for optimum performance. The duty cycle of the clock signal is uncritical, as long as minimum high or low input time for the pin is satisfied (refer to electrical characteristics). Up to 18 MHz can be used, when the clock duty cycle is 50%. Make sure, that the clock source supplies clean CMOS output logic levels and steep slopes when using a high clock frequency. The external clock input is enabled with the second positive polarity seen on the CLK input.

Hint

Switching off the external clock frequency prevents the driver from operating normally. Therefore an internal watchdog switches back to internal clock in case the external signal is missing for more than roughly 32 internal clock cycles.

26.2.1 Considerations on the Frequency

A higher frequency allows faster step rates, faster SPI operation and higher chopper frequencies. On the other hand, it causes more power dissipation in the TMC5160 digital core and 5V voltage regulator. Generally a frequency of 10 MHz to 12 MHz should be sufficient for most applications. At higher clock frequency, the VSA supply voltage should be connected to a lower voltage for applications working at more than 24 V nominal supply voltage. For reduced requirements concerning the motor dynamics, a clock frequency of down to 8 MHz (or even lower) can be considered.

27 Absolute Maximum Ratings

The maximum ratings may not be exceeded under any circumstances. Operating the circuit at or near more than one maximum rating at a time for extended periods shall be avoided by application design.

Parameter	Symbol	Min	Max	Unit
Supply voltage operating with inductive load	Vvs, VVSA	-0.5	60	V
Supply and bridge voltage short time peak (limited by peak voltage on charge pump output and (xx pins*)	$\mathrm{V}_{\text {vsmax }}$		64	V
VSA when different from VS	V Vsamax	-0.5	60	V
Peak voltages on Cxx bootstrap pins and VCP	$\mathrm{V}_{\text {CxP }}$		76	V
Supply voltage V12	$\mathrm{V}_{\text {12VOUt }}$	-0.5	14	V
Peak voltages on BM pins (due to stray inductivity)	$\mathrm{V}_{\text {BMx }}$	-6	$\mathrm{V}_{\mathrm{vs}}+6$	V
Peak voltages on Cxx bootstrap pins relative to BM	$\mathrm{V}_{\text {Cxв } \mathrm{M}}$	-0.5	16	V
I/O supply voltage on VCC_IO	$\mathrm{V}_{\text {VII }}$	-0.5	5.5	V
digital VCC supply voltage (normally supplied by 5VOUT)	V Vcc	-0.5	5.5	V
Logic input voltage	V_{I}	-0.5	$\mathrm{V}_{\mathrm{VIO}}+0.5$	V
Maximum current to / from digital pins and analog low voltage I/Os (short time peak current)	I_{I}		+/-500	mA
5 V regulator output current (internal plus external load)	$\mathrm{I}_{\text {SVOUT }}$		30	mA
5 V regulator continuous power dissipation ($\mathrm{V}_{\text {SSA }}-5 \mathrm{~V}$) * $\mathrm{I}_{\text {SVOUT }}$	$\mathrm{P}_{\text {svout }}$		1	W
12 V regulator output current (internal plus external load)	$\mathrm{I}_{\text {12vout }}$		20	mA
12 V regulator cont. power dissipation ($\mathrm{V}_{\mathrm{vm}}-12 \mathrm{~V}$) * $\mathrm{I}_{\text {12vout }}$	$\mathrm{P}_{\text {12vout }}$		0.5	W
Junction temperature	T_{J}	-50	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {STG }}$	-55	150	${ }^{\circ} \mathrm{C}$
ESD-Protection for interface pins (Human body model, HBM)	$V_{\text {ESDAP }}$		4	kV
ESD-Protection for handling (Human body model, HBM)	$\mathrm{V}_{\text {ESD }}$		1	kV

*) Stray inductivity of power routing will lead to ringing of the supply voltage when driving an inductive load. This ringing results from the fast switching slopes of the driver outputs in combination with reverse recovery of the body diodes of the output driver MOSFETs. Even small trace inductivities as well as stray inductivity of sense resistors can easily generate a few volts of ringing leading to temporary voltage overshoot. This should be considered when working near the maximum voltage.

28.2 DC and Timing Characteristics

DC characteristics contain the spread of values guaranteed within the specified supply voltage range unless otherwise specified. Typical values represent the average value of all parts measured at $+25^{\circ} \mathrm{C}$. Temperature variation also causes stray to some values. A device with typical values will not leave Min/Max range within the full temperature range.

Power supply current	DC-Characteristics$V_{V S}=V_{V S A}=24.0 \mathrm{~V}$					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Total supply current, driver disabled Ivs + Ivsa	I_{5}	$\mathrm{f}_{\text {cık }}=12 \mathrm{MHz}$ / internal clock		18	24	mA
VSA supply current (VS and VSA separated)	IVSA	$\mathrm{f}_{\text {cık }}=12 \mathrm{MHz}$ / internal clock, driver disabled		15		mA
Total supply current, operating, MOSFETs AOD4126, Ivs + IVsA	Is	$\mathrm{f}_{\text {сıк }}=12 \mathrm{MHz}, 23.4 \mathrm{kHz}$ chopper, no load		25		mA
Internal current consumption from 5V supply on VCC pin	Ivce	$\mathrm{f}_{\text {cıк }}=12 \mathrm{MHz}$		10		mA
Internal current consumption from 5V supply on VCC pin	Ivce	$\mathrm{f}_{\text {cıк }}=16 \mathrm{MHz}$		12.5		mA
IO supply current on VCC_IO (typ. at 5V)	Ivio	no load on outputs, inputs at $\mathrm{V}_{\text {Io }}$ or GND Excludes pullup / pull-down resistors		15	30	$\mu \mathrm{A}$
Motor driver section	DC- and Timing-Characteristics$V_{\text {vs }}=24.0 \mathrm{~V}_{i} \mathrm{Tj}=50^{\circ} \mathrm{C}$					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
$\mathrm{RDS}_{\text {ON }}$ lowside off driver	Ronl	Gate off		1.8	3	Ω
RDS ${ }_{\text {on }}$ highside off driver	Ronh	Gate off		2.2	3.5	Ω
Gate drive current low side MOSFET turning on at $2 \mathrm{~V} \mathrm{~V}_{G S}$	IsLPONO	DRVSTRENGTH=0		200		mA
	ISLPON2	DRVSTRENGTH=2		400		mA
	$\mathrm{I}_{\text {SLPON3 }}$	DRVSTRENGTH=3		600		mA
Gate drive current high side MOSFET turning on at $2 \mathrm{~V} \mathrm{~V}_{\mathrm{GS}}$	Islpono	DRVSTRENGTH=0		150		mA
	ISLPON2	DRVSTRENGTH=2		300		mA
	IsLPON3	DRVSTRENGTH=3		450		mA
BBM time via internal delay (start of gate switching off to start of gate switching on)	tввмо	$\begin{aligned} & \text { BBMCLKS }=0 \\ & \text { BBMTIME }=0 \end{aligned}$	75	100		ns
	$\mathrm{t}_{\text {BBM16 }}$	BBMTIME $=16$		200		ns
	$\mathrm{t}_{\text {BBM16 }}$	BBMTIME $=24$		375	500	ns
		-		- 0		-
Charge pump	DC-Characteristics					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Charge pump output voltage	$\mathrm{V}_{\text {VCP }}-\mathrm{V}_{\text {Vs }}$	operating	$V_{\text {12vout }}$ 2	$\mathrm{V}_{\text {12vout }}-$ 1		V
Charge pump voltage threshold for undervoltage detection	$\mathrm{V}_{\text {VcP }}-\mathrm{V}_{\mathrm{Vs}}$	rising, using internal 5 V regulator voltage	4.5	5	6.5	V
Charge pump frequency	f_{CP}			$\begin{gathered} \hline 1 / 16 \\ \mathrm{f}_{\text {cıкоsc }} \end{gathered}$		

Linear regulator	DC-Characteristics$V_{V S}=V_{V S A}=24.0 \mathrm{~V}$					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Output voltage	$V_{\text {sVout }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	4.80	5.0	5.20	V
Deviation of output voltage over the full temperature range	$V_{\text {5Vout(dev }}$	drivers disabled $\mathrm{T}_{\mathrm{j}}=$ full range		+/-30	+/-100	mV
Deviation of output voltage over the full supply voltage range	$V_{\text {5VOut(IEV }}$	drivers disabled, internal clock $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {VSA }}=10 \mathrm{~V} \text { to } 30 \mathrm{~V} \end{aligned}$			+/-50	$\begin{gathered} \mathrm{mV} / \\ 10 \mathrm{~V} \end{gathered}$
Output voltage	$V_{\text {12Vout }}$	operating, internal clock $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	10.8	11.5	12.2	V
Clock oscillator and input	Timing-Characteristics					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Clock oscillator frequency (factory calibrated)	fcıко八¢	$\mathrm{t}_{\mathrm{J}}=-50^{\circ} \mathrm{C}$		11.7		MHz
	fcıkosc	$\mathrm{t}_{\mathrm{J}}=50^{\circ} \mathrm{C}$	11.5	12.0	12.5	MHz
	fcıkose	$\mathrm{t}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		12.1		MHz
External clock frequency (operating)	$\mathrm{f}_{\text {cıK }}$		4	10-16	18	MHz
External clock high / low level time	$\begin{aligned} & \mathrm{t}_{\mathrm{t} \text { KKH }} / \\ & \mathrm{t}_{\mathrm{CLKL}} \\ & \hline \end{aligned}$	CLK driven to 0.1 ViIo / $0.9 \mathrm{~V}_{\text {Vio }}$	16			ns
External clock first pulse to trigger switching to external CLK	$\begin{aligned} & \mathrm{t}_{\mathrm{t} \text { LKK }} / \\ & \mathrm{t}_{\mathrm{CLKLL}} \end{aligned}$	CLK driven high A-version	16			ns
External clock first pulse to trigger switching to external CLK	$\begin{aligned} & \mathrm{t}_{\text {cıKı }} / \\ & \mathrm{t}_{\text {CIKKL }} \end{aligned}$	CLK driven high non-A-version only	30	25		ns
External clock timeout detection in cycles of internal fcıkosc	$\mathrm{t}_{\text {cıKH1 }}$	CLK driven high	32		48	cycles fcıkosc

Short detection	DC-Characteristics					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Short to GND / Short to VS detector delay (Start of gate switch on to short detected) Including 100 ns filtering time	$\mathrm{t}_{\text {SDO }}$	$\begin{aligned} & \text { FILT_ISENSE=0 } \\ & \text { S2xx_LEVEL=6 } \\ & \text { shortdelay }=0 \\ & \hline \end{aligned}$	0.5	0.85	1.1	$\mu \mathrm{s}$
	$\mathrm{t}_{\text {SD1 }}$	shortdelay=1	1.1	1.6	2.2	$\mu \mathrm{s}$
Short detector level S2VS (measurement includes drop in sense resistor)	$V_{\text {BM }}$	$\begin{array}{\|l\|} \hline \text { S2VS_LEVEL=15 } \\ \hline \text { S2VS_LEVEL }=6 \\ \hline \end{array}$	1.4 0.55	1.56 0.625	1.72 0.70	V
Short detector level S2G	$\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\text {BM }}$	$\begin{aligned} & \text { S2G_LEVEL=15; } \\ & \text { VS<52V } \end{aligned}$	1.2	1.56	1.9	V
		$\begin{aligned} & \text { S2G_LEVEL=15; } \\ & \text { VS<55V } \end{aligned}$	0.85			V
		$\begin{aligned} & \text { S2G_LEVEL=6; } \\ & \text { VS<50V } \end{aligned}$	0.46	0.625	0.80	V

Detector levels	DC-Characteristics					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
$V_{\text {VSA }}$ undervoltage threshold for RESET	Vuv_vsa	VVSA rising	3.6	4	4.6	V
$\mathrm{V}_{\text {svout }}$ undervoltage threshold for RESET	Vuv_svout	$\mathrm{V}_{\text {Svout }}$ rising		3.5		V
V VCC_Io undervoltage threshold for RESET	Vuv_vio	Vvcc_io rising (delay typ. 10 1 s)	2.0	2.5	3.0	V
V vcc_io undervoltage detector hysteresis	V Uv_viohyst			0.3		V
Overtemperature prewarning $120^{\circ} \mathrm{C}$	Totpw	Temperature rising	100	120	140	${ }^{\circ} \mathrm{C}$
Overtemperature shutdown $136^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {OT136 }}$	Temperature rising		136		${ }^{\circ} \mathrm{C}$
Overtemperature shutdown $143{ }^{\circ} \mathrm{C}$	Tot143	Temperature rising		143		${ }^{\circ} \mathrm{C}$
Overtemperature shutdown $150^{\circ} \mathrm{C}$	Tot150	Temperature rising	135	150	170	${ }^{\circ} \mathrm{C}$
Sense resistor voltage levels	DC-Characteristics$\mathrm{f}_{\mathrm{cık}}=16 \mathrm{MHz}$					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Sense input peak threshold voltage (low sensitivity) $\left(\mathrm{V}_{\text {SRXH }}-\mathrm{V}_{\text {SRXL }}\right)$	$V_{\text {SRT }}$	$\begin{aligned} & \text { GLOBALSCALER=0 } \\ & \text { csactual }=31 \\ & \sin _{2} x=248 \\ & \text { Hyst. }=0 ; I_{\text {BRxy }}=0 \end{aligned}$		325		mV
Sense input tolerance / motor current full scale tolerance -using internal reference	I coil	GLOBALSCALER=0	-5		+5	\%
Digital pins	DC-Characteristics					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input voltage low level	$\mathrm{V}_{\text {INLO }}$		-0.3		$0.3 \mathrm{~V}_{\text {VIo }}$	V
Input voltage high level	$\mathrm{V}_{\text {INHI }}$		$0.7 \mathrm{~V}_{\text {vio }}$		$\mathrm{V}_{\mathrm{VIO}}+0.3$	V
Input Schmitt trigger hysteresis	$V_{\text {INHYST }}$			$\begin{aligned} & 0.12 \\ & V_{\mathrm{VII}} \end{aligned}$		V
Output voltage low level	Voutio	$\mathrm{I}_{\text {OUTLO }}=2 \mathrm{~mA}$			0.2	V
Output voltage high level	$\mathrm{V}_{\text {OUTHI }}$	$\mathrm{I}_{\text {OUTHI }}=-2 \mathrm{~mA}$	$\mathrm{V}_{\text {vio }}-0.2$			V
Input leakage current	$\mathrm{I}_{\text {ILEAK }}$	$\square-\square$	-10		10	$\mu \mathrm{A}$
Pullup / pull-down resistors	$\mathrm{R}_{\text {PU }} / \mathrm{R}_{\text {PD }}$	- -	132	166	200	k Ω
Digital pin capacitance	C			3.5		pF

28.3 Thermal Characteristics

The following table shall give an idea on the thermal resistance of the package. The thermal resistance for a four layer board will provide a good idea on a typical application. Actual thermal characteristics will depend on the PCB layout, PCB type and PCB size. The thermal resistance will benefit from thicker CU (inner) layers for spreading heat horizontally within the PCB. Also, air flow will reduce thermal resistance.

Parameter	Symbol	Conditions	Typ	Unit
Typical power dissipation	P_{D}	StealthChop or SpreadCycle, 40 or 20kHz chopper, 24V, internal supply regulators	0.6	W
Thermal resistance junction to ambient on a multilayer board	$\mathrm{R}_{\text {TMAA }}$	Dual signal and two internal power plane board (2s2p) as defined in JEDEC EIA JESD51-5 and JESD51-7 (FR4, 35 $\mu \mathrm{m}$ CU, 70mm x 133mm, d=1.5mm)	21	K/W
Thermal resistance junction to board	$R_{\text {TJB }}$	PCB temperature measured within 1 1mm distance to the package leads	8	K/W
Thermal resistance junction to case	$R_{\text {TJC }}$	Junction temperature to heat slug of package	3	K/W

Table 28.1 Thermal characteristics TQFP48-EP
The thermal resistance in an actual layout can be tested by checking for the heat up caused by the standby power consumption of the chip. When no motor is attached, all power seen on the power supply is dissipated within the chip.

29 Layout Considerations

29.1 Exposed Die Pad

The TMC5160 uses its die attach pad to dissipate heat from the gate drivers and the linear regulator to the board. For best electrical and thermal performance, use a reasonable amount of solid, thermally conducting vias between the die attach pad and the ground plane. The printed circuit board should have a solid ground plane spreading heat into the board and providing for a stable GND reference.

29.2 Wiring GND

All signals of the TMC5160 are referenced to their respective GND. Directly connect all GND pins under the device to a common ground area (GND, GNDP, GNDA and die attach pad). The GND plane right below the die attach pad should be treated as a virtual star point. For thermal reasons, the PCB top layer shall be connected to a large PCB GND plane spreading heat within the PCB.

Attention

Place the TMC5160 near to the MOSFET bridge and sense resistor GND in order to avoid ringing leading to GND differences and to dangerous inductive peak voltages.

29.3 Wiring Bridge Supply

The power bridge will draw the full coil current in pulses with extremely high $\mathrm{dI} / \mathrm{dt}$. Thus, any inductivity between VS supply filtering and the MOSFETs can lead to severe voltage spikes. This has to be avoided. Avoid any bend in the supply traces between filtering capacitors and MOSFET switches, and keep distance as small as possible. Especially for high current, use a separate plane for the supply voltage, and a sufficient number and capacity for supply filtering. Use an additional capacitor for the IC VS pin, as additional ripple voltage would cause severe current spikes on the charge pump capacitor. A tiny series resistor can be added to avoid this.

Attention

Keep supply voltage ripple low, by using sufficient filtering capacity close to the MOSFET bridge.

29.4 Supply Filtering

The 5VOUT output voltage ceramic filtering capacitor (2.2 to $4.7 \mu \mathrm{~F}$ recommended) should be placed as close as possible to the 5VOUT pin, with its GND return going directly to the GNDA pin. This ground connection shall not be shared with other loads or additional vias to the GND plane. Use as short and as thick connections as possible. For best microstepping performance and lowest chopper noise an additional filtering capacitor should be used for the VCC pin to GND, to avoid digital part ripple influencing motor current regulation. Therefore, place a ceramic filtering capacitor (470 nF recommended) as close as possible ($1-2 \mathrm{~mm}$ distance) to the VCC pin with GND return going to the ground plane. VCC can be coupled to 5VOUT using a 2.2Ω or 3.3Ω resistor in order to supply the digital logic from 5VOUT while keeping ripple away from this pin. A 100 nF filtering capacitor should be placed as close as possible to the VSA pin to ground plane. Make sure, that VS does not see excessive voltage spikes caused by bridge operation and place a 100 nF or larger filter capacitor to GND close to the VS pin.

Please carefully read chapters 3.3 and 3.4 to understand the special considerations with regard to layout and component selection for the external MOSFET power bridges.

29.5 Layout Example

Schematic (TMC5160+MOSFETs shown)

www.trinamic.com

published by WWW.SKYTECH.IR

3- Inner Layer (supply VS)

4- Bottom Layer

Assembly Drawing Top

TMC5160-EVAL v2.0 02.05.2017
Figure 29.1 Layout example

Hint

When using the TQFP package in designs for more than 30V consider PCB coating to satisfy sufficient creeping distances.

30 Package Mechanical Data

30.1 Dimensional Drawings TQFP48-EP

Drawings not to scale.

Figure 30.1 Dimensional drawings TQFP48-EP

Parameter	Ref	Min	Nom	Max
total thickness	A	-	-	1.2
stand off	A1	0.05	-	0.15
mold thickness	A2	0.95	1	1.05
lead width (plating)	b	0.17	0.22	0.27
lead width	b1	0.17	0.2	0.23
lead frame thickness (plating)	c	0.09	-	0.2
lead frame thickness	c1	0.09	-	0.16
body size X (over pins)	D		9.0	
body size Y (over pins)	E		9.0	
body size X	D1		7.0	
body size Y	E1		7.0	
lead pitch	e		0.5	
lead	L	0.45	0.6	0.75
footprint	L1		1 REF	
	Θ	0°	3.5°	7°
	$\Theta 1$	0°	-	-
	$\Theta 2$	11°	12°	13°
	$\Theta 3$	11°	12°	13°
	R1	0.08	-	-
	R2	0.08	-	0.2
	S	0.2	-	-
exposed die pad size X	M	4.9	5	5.1
exposed die pad size Y	N	4.9	5	5.1
package edge tolerance	aaa			0.2
lead edge tolerance	bbb			0.2
coplanarity	ccc			0.08
lead offset	ddd			0.08
mold flatness	eee			0.05

www.trinamic.com

published by WWW.SKYTECH.IR

30.2 Dimensional Drawings QFN-WA

Figure 30.2 Dimensional drawings wettable QFN

Parameter	Ref	Min	Nom	Max	
total thickness	A	0.8	0.85	0.9	
stand off	A1	0	0.035	0.05	
mold thickness	A2		0.65		
lead frame thickness	A3		0.203		
lead width	b	0.2	0.25	0.3	
body size X	D		8.0		
body size Y	E		8.0		
lead pitch	e		0.5		
exposed die pad size X	J	6.15	6.25	6.35	
exposed die pad size Y	K	6.15	6.25	6.35	
lead length	L	0.35	0.4	0.45	
lead length	L1	0.3	0.4	0.45	
package edge tolerance	aaa		0.1		
mold flatness	bbb		0.1		
coplanarity	ccc		0.08		
lead offset	ddd	0.1			
exposed pad offset	eee	0.1			
half-cut depth	R	0.075			
half-cut depth	S			0.075	

30.3 Package Codes

Type	Package	Temperature range	Code \& marking
TMC5160A-TA	TQFP-EP48 (RoHS)	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	TMC5160A-TA
TMC5160A-WA	QFN8x8 wettable	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	TMC5160A-WA
..- T	- T denotes tape on reel packing (order option)		

www.trinamic.com

published by WWW.SKYTECH.IR

31 Design Philosophy

The TMC50XX and TMC51XX family brings premium functionality, reliability and coherence previously reserved to costly motion control units to smart applications. Integration at street level cost was possible by squeezing know-how into a few mm^{2} of layout using one of the most modern smart power processes. The ICs comprise all the knowledge gained from designing motion controller and driver chips and complex motion control systems for more than 20 years. We are often asked if our motion controllers contain software - they definitely do not. The reason is that sharing resources in software leads to complex timing constraints and can create interrelations between parts which should not be related. This makes debugging of software so difficult. Therefore, the IC is completely designed as a hardware solution, i.e. each internal calculation uses a specially designed dedicated arithmetic unit. The basic philosophy is to integrate all real-time critical functionality in hardware, and to leave additional starting points for highest flexibility. Parts of the design go back to previous ICs, starting from the TMC453 motion controller developed in 1997. Our deep involvement, practical testing and the stable team ensure a high level of confidence and functional safety.

Bernhard Dwersteg, CTO and founder

32 Disclaimer

TRINAMIC Motion Control GmbH \& Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH \& Co. KG. Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

Information given in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use.

Specifications are subject to change without notice.
All trademarks used are property of their respective owners.

33 ESD Sensitive Device

The TMC5160 is an ESD sensitive CMOS device sensitive to electrostatic discharge. Take special care to use adequate grounding of personnel and machines in manual handling. After soldering the devices to the board, ESD requirements are more relaxed. Failure to do so can result in defect or decreased reliability.

34 Designed for Sustainability

Sustainable growth is one of the most important and urgent challenges today. We at Trinamic try to contribute by designing highly efficient IC products, to minimize energy consumption, ensure best customer experience and long-term satisfaction by smooth and silent run, while minimizing the demand for external resources, e.g. for power supply, cooling infrastructure, reduced motor size and magnet material by intelligent control interfaces and advanced algorithms.

Please help and design efficient and durable products made for a sustainable world.
35 Table of Figures
Figure 1.1 TMC5160 basic application block diagram (motion controller) 5
Figure 1.2 TMC5160 STEP/DIR application diagram 6
FIGURE 1.3 TMC5160 STANDALONE DRIVER APPLICATION DIAGRAM 6
Figure 1.4 Automatic Motor Current Power Down 8
Figure 1.5 Energy efficiency with CoolStep (example) 9
Figure 2.1 TMC5160-TA PACKAGE AND PINNING TQFP-EP 48 (7X7MM² BODY, 9X9MM² WITH LEADS) 11
Figure 2.2 TMC5160-WA package and pinning QFN-WA (8x8mm²) 11
Figure 3.1 Standard application circuit 15
Figure 3.2 External gate voltage supply 16
Figure 3.3 Miller charge determines switching slope 17
Figure 3.4 Slopes, Miller plateau and blank time 18
FIGURE 3.5 BRIDGE PROTECTION OPTIONS FOR POWER ROUTING INDUCTIVITY 19
Figure 3.6 Ringing of output (blue) and Gate voltages (Yellow, Cyan) with untuned brige. 20
Figure 3.7 SWitching event with optimized components (without / after bulk diode conduction) 20
Figure 3.8 EXAMPLE FOR BRIDGE WITH TUNED COMPONENTS (SEE SCOPE SHOTS) 21
Figure 3.9 External Gate Driver Example 22
Figure 4.1 SPI timing 25
Figure 5.1 Addressing multiple TMC5160 VIA Single wire interface using Chaining 29
FIgURE 5.2 AdDRESSING MULTIPLE TMC5160 VIA THE DIFFERENTIAL INTERFACE, ADDITIONAL FILTERING FOR NAI 30
Figure 7.1 Motor coil sine wave current with StealthChop (measured with current probe) 57
Figure 7.2 StealthChopz automatic tuning procedure 59
Figure 7.3 SCOPE Shot: good setting for PWM_REG. 61
Figure 7.4 SCOPE SHOT: TOO SMALL SEtTING FOR PWM REG DURING AT\#Z 61
Figure 7.5 SUCCESSFUlly determined PWM_GRAD(_AUTO) AND PWM_OFS(_AUTO). 61
Figure 7.6 Velocity based PWM scaling (PWM_autoscale=o) 64
Figure 7.7 TPWMTHRS for optional switching to SpreadCycle. 65
Figure 8.1 Chopper phases 68
Figure 8.2 No ledges in current wave with sufficient hysteresis (magenta: current A, yellow \& blue: sense RESISTOR VOLTAGES A AND B) 70
Figure 8.3 SpreadCycle chopper scheme showing coil current during a chopper cycle 71
Figure 8.4 Classic const. Off time chopper with offset showing coil current 72
Figure 8.5 Zero crossing with classic chopper and correction using sine wave offset 72
FIGURE 10.1 CHOICE OF VELOCITY DEPENDENT MODES 76
Figure 11.1 Short detection 79
FIGURE 12.1 RAMP GENERATOR VELOCITY TRACE SHOWING CONSEQUENT MOVE IN NEGATIVE DIRECTION 82
Figure 12.2 Illustration Of OPtimized motor torque usage with TMC 5160 Ramp generator 83
Figure 12.3 Ramp generator velocity dependent motor control 84
Figure 12.4 Using reference switches (EXAmple). 85
Figure 13.1 Function principle of StallGuardz 87
Figure 13.2 EXample: optimum SGT setting and StallGuardz reading with an example motor 89
Figure 14.1 COOLStep Adapts motor Current to the load..... 92
Figure 15.1 STEP and DIR timing, Input pin filter 94
Figure 15.2 MicroPlyer microstep interpolation with rising STEP frequency (Example: 16 TO 256) 96
FIGURE 16.1 DIAG OUTPUTS IN STEP/DIR MODE 97
Figure 16.2 DIAG outputs with SD_MODE=o 98
Figure 17.1 DCSTEP EXTENDED APPLICATION OPERATION AREA 99
Figure 17.2 Velocity profile with impact by overload situation 100
Figure 17.3 Motor moving slower than STEP input due to light overload. LOSTSTEPS incremented 103
FIGURE 17.4 FULL SIGNAL INTERCONNECTION FOR DCSTEP 103
Figure 17.5 DCO Interface to motion controller - step generator stops when DCO is asserted 104
Figure 18.1 LUT PROGRAMmING EXAMPLE 105
Figure 20.1 Outline of ABN signals of an incremental encoder 107
Figure 22.1 Current setting and first steps with StealthChop 111
Figure 22.2 Tuning StealthChop and SpreadCycle 112

Figure 22.3 Moving the motor using the motion Controller... 113
Figure 22.4 Enabling CoolStep (only in combination with SpreadCycle) ... 114
FIGURE 22.5 SEtTing UP DCSTEP ... 115
Figure 24.1 Standalone operation with TMC5160 (pins shown with their standalone mode names)................. 117
FIGURE 29.1 LAYOUT EXAMPLE .. 127
FIGURE 30.1 DIMENSIONAL DRAWINGS TQFP48-EP ... 128
Figure 30.2 Dimensional drawings wettable QFN ... 130

36 Revision History

Version	Date	Author BD $=$ Bernhard Dwersteg	Description
V0.14	2017-APR-13	BD	First version of datasheet based on datasheet TMC5130 V1.13.
V0.15	2017-APR-28	BD	Added QFN package and product picture
V0.9	2017-MAY-04	BD	Added new EVAL layout screenshots
V0.91	2017-MAY-15	BD	Adapted pinning for QFN wettable package (47 pins!), added preliminary package dimensions
V0.92	2017-MAY-31	BD	Added hints for automatic tuning process.
V0.93	2017-SEP-07	BD	Some text enhancements, higher operating voltage limit
V0.94	2017-SEP-14	BD	UV VCCIO $\rightarrow 2 \mathrm{~V}$ min.
V1.00	2017-NOV-18	BD	Link corrected, OTP read table addr. corr. Reduced peak operation voltage limits Added some Attention boxes or converted to Hint
V1.01	2017-NOV-29	BD	S2G detector thresholds fixed for final product, Corrected TPFD time formula
V1.02	2017-DEZ-14	BD	SWIOP/N \rightarrow SWP/N, CFG6 errata
V1.04	2018-MAY-02	BD	Exchanged Title graphics for -WA, minor fixes of text.
V1.06	2018-JUN-06	BD	Added errata / limitations for initial tuning of AT\#1 / AT\#2 phase
V1.07	2018-0CT-18	BD	Corrected 52V and 55V limits for S2GND detector, minor corrections
V1.08	2018-NOV-19	BD	Added hints for tuning MOSFET bridge, added wiring bridge supply
V1.10	2019-FEB-05	BD	Corrected timing requirements for CLK input (30ns for first pulse) / some minor fixes
V1.11	2019-JUN-07	BD	Minor wording, hint on coating, added order codes
V1.12	2019-AUG-05	BD	Added changes for TMC5160A, Errata for DIAG output in standalone mode
V1.13	2019-NOV-19	BD	Minor changes, added high voltage example

Table 36.1 Document Revisions

37 References

[TMC5160-EVAL] TMC5160-EVAL Evaluation Board
[ANO01] Trinamic Application Note 001 - Parameterization of SpreadCycle ${ }^{T M}$, www.trinamic.com
[AN002] Trinamic Application Note 002 - Parameterization of StallGuard2 ${ }^{\text {TM }} \&$ CoolStep $^{\text {TM }}$, www.trinamic.com
[AN003] Trinamic Application Note 003 - DcStep ${ }^{\text {TM }}$, www.trinamic.com
Calculation sheet TMC5160_Calculations.xlsx

[^0]: www.trinamic.com

[^1]: Quick Start
 For a quick start, see the Quick Configuration Guide in chapter 22.

